

Software Getting Started

Software enablement guide SBC-S32G

V 0.4

Table of Contents

Software enablement guide SBC-S32G V 0.4 2/14
 © MicroSys Electronics GmbH 2025

Table of Contents

1 General Notes .. 3
1.1 Warranty .. 3
1.2 Links .. 3
1.3 Liability .. 3
1.4 Offer to Provide Source Code of Certain

Software .. 4
2 Introduction ... 5
2.1 Short Description ... 5
2.2 Terminology .. 5

3 Build setup ... 6
3.1 NXP firmware binaries 6
3.1.1 Firmware repo structure 6
3.2 Build environment .. 7
3.2.1 Sample docker image 7
3.2.2 Known issues .. 8
4 Peripheral related .. 9
4.1 Ethernet ... 9

4.1.1 2.5 Gbit support ... 10
4.2 SJA-Firmware .. 10
4.3 Storage eMMC/SD card............................... 10
4.4 Storage QSPI .. 10
4.5 Storage EEPROM 11
4.6 Serdes config ... 11
4.6.1 Custom Serdes config 11
5 Boot config ... 12

5.1 HSE usage .. 12
5.1.1 Known pitfalls .. 12
5.2 A53 boot .. 12
5.3 M7 boot.. 12
5.3.1 Known pitfalls .. 13
6 History .. 14

Software enablement guide SBC-S32G V 0.4 3/14
 © MicroSys Electronics GmbH 2025

1 General Notes

Copyright MicroSys Electronics GmbH, October 2024

All rights reserved. All rights in any information which appears in this document

belong to MicroSys Electronics GmbH or our licensors. You may copy the

information in this manual for your personal, non-commercial use.

Copyrighted products are not explicitly indicated in this manual. The absence of the

copyright (©) and trademark (TM or ®) symbols does not imply that a product is not

protected. Additionally, registered patents and trademarks are similarly not

expressly indicated in this manual.

1.1 Warranty

To the extent permissible by applicable law all information in this document is

provided without warranty of any kind, whether expressed or implied, including but

not limited to any implied warranty of satisfactory quality or fitness for a particular

purpose, or of non-infringement of any third party’s rights. We try to keep this

document accurate and up-to-date but we do not make any warranty or

representation about such matters. In particular we assume no liability or

responsibility for any errors or omissions in this document.

MicroSys Electronics GmbH neither gives any guarantee nor accepts any liability

whatsoever for consequential damages resulting from the use of this manual or its

associated product.

MicroSys Electronics GmbH further reserves the right to alter the layout and/or

design of the hardware without prior notification and accepts no liability for doing

so.

1.2 Links

We make no warranty about any other sites that are linked to or from this

document, whether we authorise such links or not.

1.3 Liability

To the extent permissible by applicable law, in no circumstance, including (but not

limited to) negligence, shall we be liable for your reliance on any information in this

document, nor shall we be liable for any direct, incidental, special, consequential,

indirect or punitive damages nor any loss of profit that result from the use of, or the

inability to use, this document or any material on any site linked to this document

even if we have been advised of the possibility of such damage. In no event shall

our liability to you for all damages, losses and causes of action whatsoever,

whether in contract, tort (including but not limited to negligence) or otherwise

exceed the amount, if any, paid by you to us for gaining access to this document.

MicroSys Electronics GmbH

Muehlweg 1

82054 Sauerlach

Germany

Phone: +49 8104 801-0

Fax: +49 8104 801-110

Software enablement guide SBC-S32G V 0.4 4/14
 © MicroSys Electronics GmbH 2025

1.4 Offer to Provide Source Code of Certain
Software

This product contains copyrighted software that is licensed under the General

Public License (“GPL”) and under the Lesser General Public License Version

(“LGPL”). The GPL and LGPL licensed code in this product is distributed without

any warranty. Copies of these licenses are included in this product.

You may obtain the complete corresponding source code (as defined in the GPL)

for the GPL Software, and/or the complete corresponding source code of the LGPL

Software (with the complete machine-readable “work that uses the Library”) for a

period of three years after our last shipment of the product including the GPL

Software and/or LGPL Software, which will be no earlier than December 1, 2010,

for the cost of reproduction and shipment, which is dependent on the preferred

carrier and the location where you want to have it shipped to, by sending a request

to:

MicroSys Electronics GmbH

Muehlweg 1

82054 Sauerlach

Germany

In your request please provide the product name and version for which you wish to

obtain the corresponding source code and your contact details so that we can

coordinate the terms and cost of shipment with you.

The source code will be distributed WITHOUT ANY WARRANTY and licensed

under the same license as the corresponding binary/object code.

This offer is valid to anyone in receipt of this information.

MicroSys Electronics GmbH is eager to duly provide complete source code as

required under various Free Open Source Software licenses. If however you

encounter any problems in obtaining the full corresponding source code we would

be much obliged if you give us a notification to the email address

gpl@microsys.de, stating the product and describing the problem (please do NOT

send large attachments such as source code archives etc to this email address)

mailto:gpl@microsys.de

Software enablement guide SBC-S32G V 0.4 5/14
 © MicroSys Electronics GmbH 2025

2 Introduction
Thank you for choosing the MicroSys SBC-S32GXXX Single Board Computer

system. This manual should help you gain a good understanding of the software

and how to enable you to use it.

2.1 Short Description
Any “SBC” labeled system is a small computer system consisting of

■ the MPX-S32GXXX module, based on NXP’s S32G Vehicle Network

Processor

■ and the CRX-S32G carrier board.

The MPX, also short called module, can be exchanged.

2.2 Terminology

For better understanding, generic terms are used across this documentation.

The “MPX-S32GXXX module” is referred as module.

The “CRX-S32G” is referred as carrier.

Software that might have restricted access and is therefore optional is called

“restricted firmware”.

Whenever the term “BSP” is used, it refers to the delivery containing the original

NXP BSP, all open-source projects linked to it, patches from MicroSys and

potentially restricted firmware. In case the author talks about the unchanged NXP

delivery, it is called “NXP BSP”.

Software enablement guide SBC-S32G V 0.4 6/14
 © MicroSys Electronics GmbH 2025

3 Build setup
All MicroSys releases are built on top of the public NXP BSP releases.

3.1 NXP firmware binaries

NXP provides firmware for peripherals like PFE, HSE and LLCE. The BSP release

provides infrastructure to integrate those as a firmware repository. MicroSys

doesn’t use the externalsrc providing structure NXP does. This can help you for

automation environments.

In case you want to use this as well, you need to get them from NXP directly by

accepting their License agreement. If you have any trouble getting in touch with

NXP colleagues, please contact us, we can arrange this.

3.1.1 Firmware repo structure

The repository shall use the following structure:

• pfe

o s32g2

▪ s32g_pfe_class.fw

▪ ….

• hse

o s32g2

▪ HSE_FW_S32G2XX_0_1_0_14

• ….

•

o s32g3

▪ HSE_FW_S32G3XX_0_1_0_14

• ….

• llce

o s32g2

▪ dte.bin

The structure above is just a short, incomplete form of this repo of a specific

version.

You can also use just a subset of them.

The repo assignment is controlled within “meta-microsys-auto/conf/microsys-

distro-common.conf”. There are samples to provide the source as git repo. You

can also use other formats like a zip file with the same structure. Be careful

about relative paths for different archive types.

You can override or patch those values for your use-case.

Software enablement guide SBC-S32G V 0.4 7/14
 © MicroSys Electronics GmbH 2025

3.2 Build environment

The build works with the same settings as normal NXP BSP builds work as well.

Please refer to their documentation for this.

Extract the meta-microsys-auto directory into the source repo. Usually at the same

level as meta-alb.

Patch the meta-alb and poky with files provided in meta-microsys-

auto/patches/meta-alb

3.2.1 Sample docker image

There is a sample docker image available which is suitable as container to build

the BSP. It handles the pitfalls as well as patches we require.

The docker setup is in an alpha state and has some open points. These may not

be problematic for you but consider them.

In case you use your own environment, check the section about patches in the

dockerfile and adapt those. Doing those patches is mandatory.

Make sure you have docker installed

Make sure you placed the downloaded files mentioned in the “TODO” section of

the Dockerfile in the same directory as “Dockerfile”. Namely microsys metalayer

and optionally your NXP Firmware

Do to the directory with the Dockerfile and build the container:

docker build -t nxpbuildcontainer:bsp42 ./

Create directories for sstate-cache, downloads and deploy

Run the container:

docker run --rm -it -v <Storage

directory>/sstate/:/home/dev/fsl-auto-yocto-bsp/sstate-

cache -v <Storage directory>/downloads/:/home/dev/fsl-auto-

yocto-bsp/downloads -v <Storage

directory>/deploy/:/home/dev/deploy nxpbuildcontainer:bsp42

bash”

Run

source nxp-setup-alb.sh -m s32g399ar5sbc3 -j 8 -t 12

Replace the machine identifier with the one you want to build.

Replace the -t 12 with the number of cores your machine has to speed up builds.

Reduce the -t 12 in case you have not much RAM. Minimum RAM should be the

double of -t parameter to be on the safe side.

To build, run

bitbake microsys-image-auto

The ready to use images are located at in

Software enablement guide SBC-S32G V 0.4 8/14
 © MicroSys Electronics GmbH 2025

/home/dev/fsl-auto-yocto-

bsp/build_s32g274ar2sbc3/tmp/deploy/images/…

Copy all files you need to /home/dev/deploy. These will appear in the mapped

directory of the docker run. Otherwise, those files will all be deleted once you exit

the container.

You can rebuild the container/map the metalayers for rebuilding and more

advanced development. If you map downloads and sstate-cache directory, the

build is done within a couple minutes. A clean building takes an hour on high

performance systems.

3.2.2 Known issues

• The inclusion of NXP firmware seems to be not working. They are kept

unbuilt. This is under investigation. You can still build without the firmware

images/install them in the final image manually.

• The build stores the tmp directory in the docker root fs.

This means you need ~100GB of space there or you set in your docker

daemon config a proper “data-root” where you have lots of space.

• Github sources fetching might be interrupted. In case of fetch errors, just

restart the build. It will save all successful downloads in the mapped

directory. Don’t clean that directory, so future builds will be more stable.

Software enablement guide SBC-S32G V 0.4 9/14
 © MicroSys Electronics GmbH 2025

4 Peripheral related

4.1 Ethernet

The carrier has a variety of Ethernet connectors. Please refer to the hardware

manual for internal connection of those. This document will only mention internal

connections and assignments if required for the software view.

 Name in Uboot Name in Linux

ST23 pfe0 (1Gbit) pfe0 (1GBit)

ST20 pfe0 (1Gbit) pfe0 (100Mbit)

ST21A (top) ethernet (1Gbit) eth0 (1Gbit)

ST21B (bottom) pfe0 (1Gbit) pfe0 (1Gbit)

ST22A (top) pfe1 (1Gbit) pfe1 (1Gbit)

ST22B (bottom) pfe2 (1Gbit) pfe2 (1Gbit)

ST17A (left) pfe0 (100Mbit) pfe0 (100Mbit)

ST17B (right) pfe0 (100Mbit) pfe0 (100Mbit)

ST18A (left) pfe0 (100Mbit) pfe0 (100Mbit)

ST18B (right) pfe0 (100Mbit) pfe0 (100Mbit)

ST19B (left) pfe0 (100Mbit) pfe0 (100Mbit)

ST19 (right) pfe0 (100Mbit) pfe0 (100Mbit)

Be aware that pfe0 is always set to “link up” in Linux, because it is going through

the SJA Switch that is providing a link. That’s the same reason the “pfe0” appears

multiple times on different ports.

For this reason, pfe0 will not acquire an IP on connection of ethernet via DHCP if

the connection was established after booting. Run

udhcpc -i pfe0

Software enablement guide SBC-S32G V 0.4 10/14
 © MicroSys Electronics GmbH 2025

In uboot you can switch between pfe1 and pfe2 by “env set ethact eth[2|3]”. Those

mappings are also printed on uboot boot console.

pfe0 is going through the SJA1110 which is typically initialized in Linux. If you want

to enable pfe0 in uboot, load the 1Gbit SJA1110 Firmware into onboard QSPI and

enable the DIP Switch to enable QSPI loading.

4.1.1 2.5 Gbit support

The board supports 2.5 Gbit for the pfe0 connection. It is the connection bandwidth

between the processor and the SJA switch. The 2.5 Gbit is therefore an internal

connection and not accessible outside of the chip. Enabling that reduces risk of a

bottleneck at the uplink.

To enable 2.5Gbit, check the “serdes config” chapter.

4.2 SJA-Firmware

If your network supports the IP range 192.168.0.0/24, you can see statistics about

the SJA1110 under http://192.168.0.165/uplink.html

Those indicate which ports are active.

You can flash a new SJA firmware image to QSPI file via TFTP.

Keep this in mind for security reasons.

Host: 192.168.0.165

remote image name: flash.bin

4.3 Storage eMMC/SD card

eMMC and SD card are not supported simultaneously. There is a multiplexer

controlled by a microcontroller (since module Rev 5, before a EDIP switch) to

select one.

You can see which one is selected by

mmc info

 command in uboot. You get “MMC version 5.X” for eMMC and “SD version: X.Y”

dependent which one is executed.

Module Rev5 and later, you can switch temporarily to eMMC by the command

i2c dev 0;i2c mw 0x10 0x12 <VALUE>

VALUE == 1 means eMMC, 0 is SD card. Run

mmc rescan

after a switch. This way you can load data from SD, do the switch, and flash data to

eMMC. This is a quick and easy way to flash eMMC. Especially if there is no direct

network connection.

4.4 Storage QSPI

The QSPI, better called NOR flash on the module provides reliable storage over

long time. It can be flashed from internal or external tooling.

Easiest way is using the uboot in SD card mode.

http://192.168.0.165/uplink.html

Software enablement guide SBC-S32G V 0.4 11/14
 © MicroSys Electronics GmbH 2025

i2c dev 0;i2c mw 0x10 0x12 <VALUE>

4.5 Storage EEPROM

There is an EEPROM on the module which holds the RCW defining the boot mode

of S32G. It is also the default location for the u-boot environment.

On the default module, there are two EEPROMs (0x50 and 0x56) which can be

flipped by a dipswitch.

Be careful writing to those as this might make the board unbootable.

Some changes on the EEPROM are only effective after a power cycle.

4.6 Serdes config

The serdes is the underlying system for PCIe and some Ethernet connectors.

It needs to be configured at uboot. In case this is done wrong, it influences the

devicetree the Linux kernel will be launched with.

The board natively supports the following modes:

• M2 slot active + 1Gbit on pfe0

• M2 slot inactive + 2.5Gbit on pfe0

You can alter the modes with the command “serdes mode <m2|2G5>” in uboot.

Changing that will alter the EEPROM contents. Replacing/reflashing the SD

card/eMMC/QSPI doesn’t restore the settings.

Depending on this mode, the uboot and Linux will select at runtime which serdes

config (part of “hwconfig” of uboot), SJA Firmware and network config shall be

used.

In case you persist, an environment variable called “hwconfig_forced”, this will

override the precompiled two configs for M2 on/off as mentioned above.

For special operations, you can also set the serdes frequency manually without

mode guidance. See the help of the “serdes” command for further details.

4.6.1 Custom Serdes config

The Microsys Uboot supports setting special serdes hwconfig parameters in case

you use a custom carrier. It overwrites the M2/2G5 settings.

Get in touch with us to provide further details.

Software enablement guide SBC-S32G V 0.4 12/14
 © MicroSys Electronics GmbH 2025

5 Boot config

5.1 HSE usage

In case the HSE is configured, it is launched before the A53 or M7 application

cores are used.

Information about how to configure HSE is found in Build setup/NXP firmware

binaries.

5.1.1 Known pitfalls

In case the launching of the HSE fails, the boot will not continue. As HSE doesn’t

print anything on serial, there is no reaction from the board. Depending on the

other configuration, a watchdog might trigger resets.

HSE has different versions which are not compatible between CPU SoC revisions.

Always use the intended versions.

5.2 A53 boot

By default, the MicroSys metalayer configures the booting of A53 core 0 directly.

There is no lockstep configured.

BootROM loads the initial image (BL2) to SRAM and launches it. In default

configuration, BL31, UBoot and Linux are booted.

5.3 M7 boot

In case one activates the M7 boot by passing “m7boot” as distro feature by putting

DISTRO_FEATURES_DEFAULT:append = " m7boot "

require conf/machine/include/m7-boot.inc

ATF_IMAGE_FILE = "fip.s32-qspi.m7"

ATF_IMAGE = "arm-trusted-firmware"

in the microsys-auto.conf/your conf file, it will include an M7 application.

The building produces one firmware image without the m7 and one containing it.

The SDCard images contain the M7 firmware. They can be observed by the “.m7”

suffix.

BootROM will load the A53 plus M7 image to SRAM and execute the M7 on the

M7_0 core.

The sample application provided is initializing the A53_0 core and launching the

already loaded BL2 on it. After this, it puts the M7 core to sleep by exiting itself.

Despite the default M7 boot config of NXP, MicroSys is not initializing the A53 in

lockstep mode.

Due to absence of UART drivers, clock initialization and more, the M7 application

cannot print anything. One can verify by debugger that M7_0 is now in the end

label of the m7 application.

You can also see the data of the M7 application with a debugger. With BSP42 G3

builds you can see the code like here. One could use the M7 for further

computation or any other need.

Software enablement guide SBC-S32G V 0.4 13/14
 © MicroSys Electronics GmbH 2025

5.3.1 Known pitfalls

As of BSP42, the M7 image is prepended to the BL2 image.

In case one puts more code into the M7 image, SRAM is required to hold it.

Consider moving the BL2 load address to another location to make space for it.

The current implementation of BSP42 relies on concatenation of M7 and A53

images. This means that M7 is loaded in front of the A53 application. This might

limit more complex solutions. After BL2 has jumped to BL31, its memory location

can be reused. Consider synchronizing this event in M7 or treat the BL2 memory

space as reserved the whole lifetime.

Software enablement guide SBC-S32G V 0.4 14/14
 © MicroSys Electronics GmbH 2025

6 History

Date Version Change Description

2024-11-21 0.1 Initial version

2024-12-06 0.2 Added Docker build description and Bootmodes

2024-12-09 0.3 Adapt and test docker guide for BSP42

2025-01-29 0.4 2.5Gbit configuration

Table 6-1 Document History

