

miriac MPX-S32G399A

User Manual (HW Revision 6)

V6.1

Table of Contents

1	General Notes4
1.1	Warranty4
1.2	Links4
1.3	Liability4
1.4	Offer to Provide Source Code of Certain Software
1.5	Symbols, Conventions and Abbreviations 6
1.5.1	Symbols6
1.5.2	Conventions6
1.6	Safety and Handling Precautions7
2	Short Description8
3	System Description9
3.1	Block Diagram9
3.2	System Components9
3.3	Ordering Information9
3.4	Power Consumption 10
3.5	Cooling 10
4	Technical Description11
4.1	Pinouts11
4.1.1	Module Connector – Top Pins11
4.1.2	Module Connector – Bottom Pins16
4.2	Power Structure21
4.3	Reset Structure
4.4	Clock Structure
4.5	Boot Mode Configuration27
4.6	LEDs
4.7	RTC29
4.8	Temperature sensors
4.8.1	TMP112
4.8.2	MCP9802
4.9	eFuse
4.10	Serial Boot EEPROM (RCON)
4.11	Microcontroller
4.11.1	Mode of operation
4.11.2	Challenge Response Watchdog Timer 33
4.11.3	Register Interface
4.11.4	Configuration storage
4.11.5	HW interfaces
4.12	Interface Description
4.12.1	Definition of "Primary Interfaces"
4.12.2	JTAG
4.12.3	AURORA
4.12.4	ADC
4.12.5	CAN

4.12.6	RGMII	38
4.12.7	ULPI (USB)	39
4.12.8	I2C	39
4.12.9	QSPI (Flash)	41
4.12.10	SPI	42
4.12.11	UART	42
4.12.12	LIN	43
4.12.13	FlexRay	43
4.12.14	SDHC	44
4.12.15	SerDes	45
4.13	Differences between MPX-S32G274 and MPX-S32G399A	47
4.14	Debug mode	47
5	Mechanical Description	48
5.1	Edge Connector	48
5.2	Previous Numbering Scheme	49
5.3	Current Numbering Scheme	49
5.4	Pin-Layout	50
5.5	Mounting/ Unmounting	52
5.6	Board Outline	53
5.7	Height	54
5.8	Thickness	54
5.9	Component Layout - Top Side	55
5.10	Component Layout – Bottom Side	57
6	Software	59
6.1	U-Boot	59
6.2	Operating System	59
7	Safety Requirements and Protective Regulations	60
7.1	EMC	60
7.2	ESD	60
7.3	Reliability	60
7.4	Climatic conditions	61
7.5	RoHS	61
7.6	Storage Temperature	61
8	General notes	62
9	History	63
10	Appendix	64
10.1	Acronyms	64
10.2	Table of Figures	65
10.3	Table of Tables	66
10.4	Pin Definitions – Top	67
10.5	Pin Definitions – Bottom	74
10.6	Pins not available for pin multiplexing	81

1

General Notes

Copyright © MicroSys Electronics GmbH 2025

All rights reserved. All rights in any information which appears in this document belong to MicroSys Electronics GmbH or our licensors. You may copy the information in this manual for your personal, non-commercial use.

Copyrighted products are not explicitly indicated in this manual. The absence of the copyright (©) and trademark (TM or ®) symbols does not imply that a product is not protected. Additionally, registered patents and trademarks are similarly not expressly indicated in this manual.

1.1 Warranty

To the extent permissible by applicable law all information in this document is provided without warranty of any kind, whether expressed or implied, including but not limited to any implied warranty of satisfactory quality or fitness for a particular purpose, or of non-infringement of any third party's rights. We try to keep this document accurate and up to date but we do not make any warranty or representation about such matters. In particular we assume no liability or responsibility for any errors or omissions in this document.

MicroSys Electronics GmbH neither gives any guarantee nor accepts any liability whatsoever for consequential damages resulting from the use of this manual or its associated product.

MicroSys Electronics GmbH further reserves the right to alter the layout and/or design of the hardware without prior notification and accepts no liability for doing so.

1.2 Links

We make no warranty about any other sites that are linked to or from this document, whether we authorize such links or not.

1.3 Liability

To the extent permissible by applicable law, in no circumstance, including (but not limited to) negligence, shall we be liable for your reliance on any information in this document, nor shall we be liable for any direct, incidental, special, consequential, indirect or punitive damages nor any loss of profit that result from the use of, or the inability to use, this document or any material on any site linked to this document even if we have been advised of the possibility of such damage. In no event shall our liability to you for all damages, losses and causes of action whatsoever, whether in contract, tort (including but not limited to negligence) or otherwise exceed the amount, if any, paid by you to us for gaining access to this document.

MicroSys Electronics GmbH Muehlweg 1 82054 Sauerlach Germany

Phone: +49 8104 801-0

1.4 Offer to Provide Source Code of Certain Software

This product contains copyrighted software that is licensed under the General Public License ("GPL") and under the Lesser General Public License Version ("LGPL"). The GPL and LGPL licensed code in this product is distributed without any warranty. Copies of these licenses are included in this product.

You may obtain the complete corresponding source code (as defined in the GPL) for the GPL Software, and/or the complete corresponding source code of the LGPL Software (with the complete machine-readable "work that uses the Library") for a period of three years after our last shipment of the product including the GPL Software and/or LGPL Software, which will be no earlier than December 1, 2010, for the cost of reproduction and shipment, which is dependent on the preferred carrier and the location where you want to have it shipped to, by sending a request to:

MicroSys Electronics GmbH Muehlweg 1 82054 Sauerlach Germany

In your request, please provide the product name and version for which you wish to obtain the corresponding source code and your contact details so that we can coordinate the terms and cost of shipment with you.

The source code will be distributed WITHOUT ANY WARRANTY and licensed under the same license as the corresponding binary/object code.

This offer is valid to anyone in receipt of this information.

MicroSys Electronics GmbH is eager to duly provide complete source code as required under various Free Open-Source Software licenses. If however you encounter any problems in obtaining the full corresponding source code we would be much obliged if you give us a notification to the email address gpl@microsys.de, stating the product and describing the problem (please do NOT send large attachments such as source code archives etc. to this email address)

1.5 Symbols, Conventions and Abbreviations

1.5.1 Symbols

Throughout this document, the following symbols will be used:

Information marked with this symbol MUST be obeyed to avoid the risk of severe injury, health danger, or major destruction of the unit and its environment

Information marked with this symbol MUST be obeyed to avoid the risk of possible injury, permanent damage or malfunction of the unit.

Information marked with this symbol gives important hints upon details of this manual, or in order to get the best use out of the product and its features.

Table 1 Symbols

1.5.2 Conventions

Symbol	Explanation
# / xxx_B	denotes a low active signal
<i>←</i>	denotes the signal flow in the direction shown
\rightarrow	denotes the signal flow in the direction shown
\leftrightarrow	denotes the signal flow in both directions
\rightarrow	denotes the signal flow in the direction shown with additional logic / additional ICs in the signal path
I/O / INOUT	denotes a bidirectional pin
Input	denotes an input pin
Output	denotes an output pin
matched	denotes the according signal to be routed impedance controlled and length matched
Pin 1	refers to the numeric pin of a component package
Pin a1	refers to the array position of a pin within a component package
xxx-/xxx_N	denotes the negative signal of a differential pair
xxx+ / xxx_P	denotes the positive signal of a differential pair
ххх	denotes an optional not mounted or fitted part

Table 2 Conventions

1.6 Safety and Handling Precautions

DO NOT exceed the rated maximum values for the power supply! This may result in severe permanent damage to the unit, as well as possible serious injury.

ALWAYS keep the unit dry, clean, and free of foreign objects. Otherwise, irreparable damage may occur.

Parts of the unit may become hot during operation. Take care not to touch any parts of the circuitry during operation to avoid burns and operate the unit in a wellventilated location. Provide an appropriate cooling solution as required.

Electrostatic discharge (ESD) can damage the unit. Always take the necessary ESD precautions.

Many pins on the module connector are directly connected to the SOC or other ESD sensitive devices. Make or break ANY connection ONLY while the unit is switched OFF.

Otherwise, permanent damage to the unit may occur, which is not covered by warranty.

There is no separate SHIELD connection.

The module's mounting holes are <u>not</u> connected to GND Take this into account when handling and mounting the unit.

Table 3 Safety and Handling Precautions

2 Short Description

The miriac MPX-S32G399A is a member of the MPX module family based on NXP's S32G399A network processor (SoC).

MicroSys Electronics GmbH offers a Development Kit which uses the key features of the module. The customer can:

- ...test the operation of the MPX-S32G399A module
- ...evaluate the main interfaces of the S32G399A SoC
- ...test the provided software
- ...start developing

3 System Description

3.1 Block Diagram

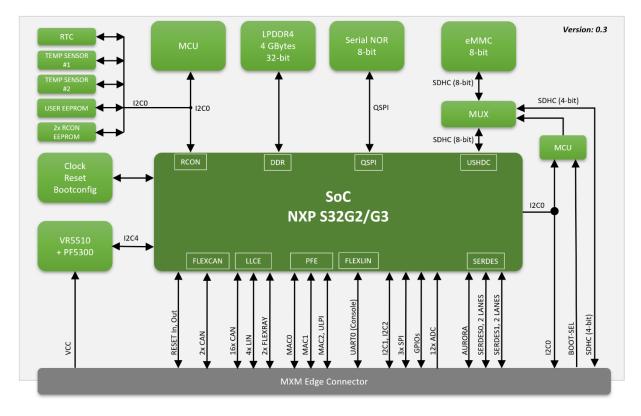


Figure 3-1 Block Diagram

3.2 System Components

- S32G399A SoC (8x Arm Cortex-A53 plus 4x Cortex-M7 lockstep cores)
- 4GB LPDDR4 SDRAM
- Serial NOR flash as boot or storage device
- eMMC flash as boot or storage device
- Clock generators for SOC and interface clocks
- I²C EEPROM
- I²C temperature sensor
- I²C RTC
- Voltage regulators for onboard voltages
- Supervisor MCU monitoring temperatures and supplies

3.3 Ordering Information

Ordering information can be found on the following website

miriac MPX-S32G399A

or contact your local sales representative.

3.4 **Power Consumption**

The MPX-S32G399A is supplied by a single input power rail.

The typical power consumption values for the module over junction temperature are determined on a CRX-S32G carrier running Linux based on BSP 36, input voltage 12V with 4 times RJ45 1G Ethernet connected as well as console over USB.

Linux Stress: stressapptest (<u>https://github.com/stressapptest/stressapptest</u>) (start parameters: -W -s 60, all cores)

T_i [°C] from Power dissipation idle [W] Power dissipation stress [W] internal probe -35 5,7 4,2 -15 4,1 5,8 0 4,2 5,8 25 4,2 5,9 50 4,5 6,2 70 5.2 6.6

Linux Idle: command prompt

Table 4 Typical power consumption running module with Linux

3.5 Cooling

In chapter 3.4 the typical power consumption of the MPX-S32G399A module was specified. With this information a cooling method needs to be designed which considers the final use case. If desired, MicroSys Electronics GmbH can support you with your cooling concept. Please ask your sales representative or send an email inquiry to <u>support@microsys.de</u>.

Do not run the module without a heatsink or appropriate cooling concept

4 **Technical Description**

4.1 Pinouts

The signal direction is from the module's view. For example, PCIE0_TX0_N, pin T90, is an output from the module and an input to peripheral devices on the carrier.

The following table gives an overview of the 314 pins of the module's edge finger. For a detailed connector description see chapter 5.1. The pins will be described in chapter 4.10 and the following sections.

The signal names in the following two tables do not show all available options for each pin. Pin multiplexing can only be implemented in combination with the vendor's datasheet.

4.1.1 Module Connector – Top Pins

Pin	Pin Name / Primary Function	Alternate Functions	GPIO?
T1	GND		
T2	SD_CLK		\checkmark
Т3	GND		
T4	SD_CMD		\checkmark
T5	GND		
Т6	SD_D0		\checkmark
T7	SD_D1		\checkmark
Т8	SD_D2		\checkmark
Т9	SD_D3		\checkmark
TK1	VCC_SDHC_1V8/3V3		
TK2	PMIC_FCCU1_OUT		
T10	GND		
T11	GND		
T12	RGMII2_MDC/DSPI0_CS7	\checkmark	\checkmark
T13	RGMII2_MDIO	\checkmark	\checkmark
T14	GND		
T15	RGMII2_RXD3/USB_D7	\checkmark	\checkmark
T16	RGMII2_RXD2/USB_D6	\checkmark	\checkmark
T17	RGMII2_RXD1/USB_D5	\checkmark	\checkmark
T18	RGMII2_RXD0/USB_D4	\checkmark	\checkmark
T19	GND		
T20	RGMII2_RXDV/USB_D3	\checkmark	\checkmark

Pin	Pin Name / Primary Function	Alternate Functions	GPIO?
T21	RGMII2_RX_CLK/USB_D2	\checkmark	\checkmark
T22	GND		
T23	RGMII2_TXD3/USB_D1	\checkmark	\checkmark
T24	RGMII2_TXD2/USB_D0	\checkmark	\checkmark
T25	RGMII2_TXD1/USB_NXT	\checkmark	\checkmark
T26	RGMII2_TXD0/USB_STP	\checkmark	\checkmark
T27	GND		
T28	RGMII2_TX_EN/USB_DIR	\checkmark	\checkmark
T29	RGMII2_TX_CLK/USB_CLK	\checkmark	\checkmark
T30	GND		
T31	RGMII1_MDC	\checkmark	\checkmark
T32	RGMII1_MDIO	\checkmark	\checkmark
T33	GND		
T34	RGMII1_RXD3	\checkmark	\checkmark
T35	RGMII1_RXD2	\checkmark	\checkmark
T36	RGMII1_RXD1	\checkmark	\checkmark
T37	RGMII1_RXD0	\checkmark	\checkmark
T38	GND		
T39	RGMII1_RXDV	\checkmark	\checkmark
T40	RGMII1_RX_CLK	\checkmark	\checkmark
T41	GND		
T42	RGMII1_TXD3	\checkmark	\checkmark
T43	RGMII1_TXD2	\checkmark	\checkmark
T44	RGMII1_TXD1	\checkmark	\checkmark
T45	RGMII1_TXD0	\checkmark	\checkmark
T46	GND		
T47	RGMII1_TX_EN	\checkmark	\checkmark
T48	RGMII1_TX_CLK	\checkmark	\checkmark
T49	GND		
T50	RGMII0_MDC	\checkmark	\checkmark
T51	RGMII0_MDIO	\checkmark	\checkmark
T52	GND		
T53	RGMII0_RXD3	\checkmark	\checkmark
T54	RGMII0_RXD2	\checkmark	\checkmark
T55	RGMII0_RXD1	\checkmark	\checkmark
T56	RGMII0_RXD0	\checkmark	\checkmark

Pin	Pin Name / Primary Function	Alternate Functions	GPIO?
T57	GND		
T58	RGMII0_RXDV	\checkmark	\checkmark
T59	RGMII0_RX_CLK	\checkmark	\checkmark
T60	GND		
T61	RGMII0_TXD3	\checkmark	\checkmark
T62	RGMII0_TXD2	\checkmark	\checkmark
T63	RGMII0_TXD1	\checkmark	\checkmark
T64	RGMII0_TXD0	\checkmark	\checkmark
T65	GND		
T66	RGMII0_TX_EN	\checkmark	\checkmark
T67	RGMII0_TX_CLK	\checkmark	\checkmark
T68	GND		
T69	PCIE1_RX0_N		
T70	PCIE1_RX0_P		
T71	GND		
T72	PCIE1_RX1_N		
T73	PCIE1_RX1_P		
T74	GND		
T75	PCIE0_RX0_N		
T76	PCIE0_RX0_P		
T77	GND		
T78	PCIE0_RX1_N		
T79	PCIE0_RX1_P		
T80	GND		
T81	MCU_SWD_CLK/KILL		
T82	MCU_SWD_DIO/SAFEIO		
T83	GND		
T84	PCIE1_TX0_N		
T85	PCIE1_TX0_P		
T86	GND		
T87	PCIE1_TX1_N		
T88	PCIE1_TX1_P		
T89	GND		
T90	PCIE0_TX0_N		
T91	PCIE0_TX0_P		
T92	GND		

Pin	Pin Name / Primary Function	Alternate Functions	GPIO?
T93	PCIE0_TX1_N		
T94	PCIE0_TX1_P		
T95	GND		
T96	AUR_CLK_N		
T97	AUR_CLK_P		
T98	GND		
T99	AUR_TX2_N		
T100	AUR_TX2_P		
T101	GND		
T102	AUR_TX0_N		
T103	AUR_TX0_P		
T104	GND		
T105	AUR_TX1_N		
T106	AUR_TX1_P		
T107	GND		
T108	AUR_TX3_N		
T109	AUR_TX3_P		
T110	GND		
T111	PB02	\checkmark	\checkmark
T112	PB07	\checkmark	\checkmark
T113	PB08	\checkmark	\checkmark
T114	PB15	\checkmark	\checkmark
T115	PC00	\checkmark	\checkmark
T116	GND		
T117	+VREF1		
T118	+VREF2		
T119	+VREF3		
T120	+VREF4		
T121	GND		
T122	PCIE0_CLKIN_N		
T123	PCIE0_CLKIN_P		
T124	GND		
T125	NMI		
T126	PMIC_RST#		
T127	RSTIN#		
T128	RST#		

Pin	Pin Name / Primary Function	Alternate Functions	GPIO?
T129	GND		
T130	SEL_CLK_RC/EP#		
T131	RCW_SEL#		
T132	Reserved, do not connect		
T133	VCC_RTC		
T134	+3V3_EXT		
T135	I2C_SCL_PROG		
T136	I2C_SDA_PROG		
T137	GND		
T138	GND		
T139	GND		
T140	GND		
T141	GND		
T142	GND		
T143	GND		
T144	GND		
T145	GND		
T146	+VIN		
T147	+VIN		
T148	+VIN		
T149	+VIN		
T150	+VIN		
T151	+VIN		
T152	+VIN		
T153	+VIN		
T154	+VIN		

Table 5 Module connector: top pins

4.1.2 Module Connector – Bottom Pins

Pin	Pin Name / Primary Function	Alternate Functions	GPIO?
B1	ADC_CH_11		
B2	ADC_CH_10		
B3	GND		
B4	ADC_CH_09		
B5	ADC_CH_08		
B6	GND		
B7	ADC_CH_07		
B8	ADC_CH_06		
B9	GND		
BK1	PMIC_STBY#		
BK2	PMIC_VDD_OK		
B10	ADC_CH_05		
B11	ADC_CH_04		
B12	GND		
B13	ADC_CH_03		
B14	ADC_CH_02		
B15	GND		
B16	ADC_CH_01		
B17	ADC_CH_00		
B18	GND		
B19	CAN00_RX		√ (INPUT)
B20	CAN00_TX		\checkmark
B21	GND		
B22	CAN01_RX		√ (INPUT)
B23	CAN01_TX		\checkmark
B24	GND		
B25	CAN02_RX		√ (INPUT)
B26	CAN02_TX		\checkmark
B27	GND		
B28	CAN03_RX		√ (INPUT)
B29	CAN03_TX		\checkmark
B30	GND		
B31	CAN04_RX	\checkmark	√ (INPUT)
B32	CAN04_TX	\checkmark	\checkmark

B33			
DOO	GND		
B34	CAN05_RX	\checkmark	√ (INPUT)
B35	CAN05_TX	\checkmark	\checkmark
B36	GND		
B37	CAN06_RX	\checkmark	√ (INPUT)
B38	CAN06_TX	\checkmark	\checkmark
B39	GND		
B40	CAN07_RX	\checkmark	√ (INPUT)
B41	CAN07_TX	\checkmark	\checkmark
B42	GND		
B43	CAN08_RX	\checkmark	√ (INPUT)
B44	CAN08_TX	\checkmark	\checkmark
B45	GND		
B46	CAN09_RX	\checkmark	√ (INPUT)
B47	CAN09_TX	\checkmark	\checkmark
B48	GND		
B49	CAN10_RX	\checkmark	√ (INPUT)
B50	CAN10_TX	\checkmark	\checkmark
B51	GND		
B52	CAN11_RX	\checkmark	√ (INPUT)
B53	CAN11_TX	\checkmark	\checkmark
B54	GND		
B55	CAN12_RX	\checkmark	√ (INPUT)
B56	CAN12_TX	\checkmark	\checkmark
B57	GND		
B58	CAN13_RX	\checkmark	√ (INPUT)
B59	CAN13_TX	\checkmark	\checkmark
B60	GND		
B61	CAN14_RX	\checkmark	√ (INPUT)
B62	CAN14_TX	\checkmark	\checkmark
B63	GND		
B64	CAN15_RX	\checkmark	√ (INPUT)
B65	CAN15_TX	\checkmark	\checkmark
B66	GND		
B67	PA15_DSPI0_SOUT	\checkmark	\checkmark
B68	PA13_DSPI0_SCK	\checkmark	\checkmark

Pin	Pin Name / Primary Function	Alternate Functions	GPIO?
B69	PA14_DSPI0_SIN	\checkmark	\checkmark
B70	PB09_DSPI0_CS1	\checkmark	\checkmark
B71	PB10_DSPI0_CS2	\checkmark	\checkmark
B72	GND		
B73	PA06_DSPI1_SOUT	\checkmark	\checkmark
B74	PA08_DSPI1_SCK	\checkmark	\checkmark
B75	PF15_DSPI1_SIN	\checkmark	\checkmark
B76	PA07_DSPI1_CS0	\checkmark	\checkmark
B77	GND		
B78	PA11_DSPI5_SOUT	\checkmark	\checkmark
B79	PA09_DSPI5_SCK	\checkmark	\checkmark
B80	PA10_DSPI5_SIN	\checkmark	\checkmark
B81	PA12_DSPI5_CS0	\checkmark	\checkmark
B82	JTAG_TCK		\checkmark
B83	JTAG_TDO		\checkmark
B84	JTAG_TDI		\checkmark
B85	JTAG_TMS		\checkmark
B86	JCOMP		
B87	GND		
B88	PF03_CLKOUT0		\checkmark
B89	PF04_CLKOUT1		\checkmark
B90	GND		
B91	FLXR0A_RX_D	\checkmark	\checkmark
B92	FLXR0A_TX_D	\checkmark	\checkmark
B93	FLXR0A_TXEN#	\checkmark	\checkmark
B94	GND		
B95	FLXR0B_RX_D	\checkmark	\checkmark
B96	FLXR0B_TX_D	\checkmark	\checkmark
B97	FLXR0B_TXEN#	\checkmark	\checkmark
B98	GND		
B99	PB12_FXCAN2_RX	\checkmark	\checkmark
B100	PB11_FXCAN2_TX	\checkmark	\checkmark
B101	GND		
B102	PB14_FXCAN3_RX	\checkmark	\checkmark
B103	PB13_FXCAN3_TX	\checkmark	\checkmark
B104	GND		

Pin	Pin Name / Primary Function	Alternate Functions	GPIO?
B105	LIN0_RX		√ (INPUT)
B106	LIN0_TX	\checkmark	\checkmark
B107	GND		
B108	LIN1_RX	\checkmark	√ (INPUT)
B109	LIN1_TX	\checkmark	\checkmark
B110	GND		
B111	LIN2_RX	\checkmark	√(INPUT)
B112	LIN2_TX	\checkmark	\checkmark
B113	GND		
B114	LIN3_RX		√(INPUT)
B115	LIN3_TX	\checkmark	\checkmark
B116	GND		
B117	PCIE1_CLKC_N		
B118	PCIE1_CLKC_P		
B119	GND		
B120	PCIE0_CLKC_N		
B121	PCIE0_CLKC_P		
B122	GND		
B123	PMIC_FSOUT#		
B124	PMIC_FIN/MCU_SWD_RST#		
B125	VDD_OTP		
B126	PMIC_PWROFF#		
B127	PMIC_PSYNC		
B128	PMIC_FOUT/AMUX		
B129	GND		
B130	PC09_UART0_TX	\checkmark	\checkmark
B131	PC10_UART0_RX	\checkmark	\checkmark
B132	GND		
B133	PB01_I2C0_SCL	\checkmark	\checkmark
B134	PB00_I2C0_SDA	\checkmark	\checkmark
B135	PB03_I2C1_SCL	\checkmark	\checkmark
B136	PB04_I2C1_SDA	\checkmark	\checkmark
B137	PB05_I2C2_SCL	\checkmark	\checkmark
B138	PB06_I2C2_SDA	\checkmark	\checkmark
B139	GND		
B140	GND		

Pin	Pin Name / Primary Function	Alternate Functions	GPIO?
B141	GND		
B142	GND		
B143	GND		
B144	GND		
B145	GND		
B146	GND		
B147	GND		
B148	+VIN		
B149	+VIN		
B150	+VIN		
B151	+VIN		
B152	+VIN		
B153	+VIN		
B154	+VIN		
B155	+VIN		
B156	+VIN		

Table 6 Module connector: bottom pins

4.2 **Power Structure**

The MPX-S32G399A module is supplied by a single 6-36V supply. Onboard voltages are generated by the PMIC VR5510. The core voltage is generated from 3V3.

For RTC backup buffering an additional supply "VCC_RTC" is necessary from the carrier.

The module itself does not provide any supply voltage to the carrier but it has some reference voltages that show the voltage level of the respective interface on the module. If necessary, the carrier must track the reference voltages and generate a copy which can carry higher loads.

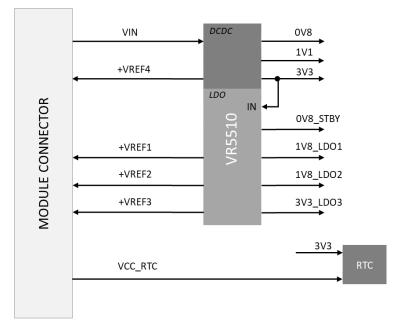


Figure 4-1 Power supplies: structure

The following table shows the available voltages on the module connector:

Module Connector								
Pin	Signal	I/O Range	Description					
T146-T154 / B148-B156	VIN	6-36V	Module supply input					
T117	+VREF1	1.8V	Reference voltage output					
T118	+VREF2	1.8V	Reference voltage output					
T119	+VREF3	3.3V	Reference voltage output					
T120	+VREF4	3.3V	Reference voltage output					
T133	VCC_RTC	1.1V-5.5V	Optional backup supply					
T134	+3V3_EXT	3.3V	Optional boot EEPROM programming sup- ply input					
B125	VDD_OTP	typ. 7.5V see PMIC datasheet	Optional voltage for PMIC debug mode. May be left open if debugging is not re- quired. Power sequence can be found in PMIC datasheet.					

Table 7 Module connector: power pin assignments

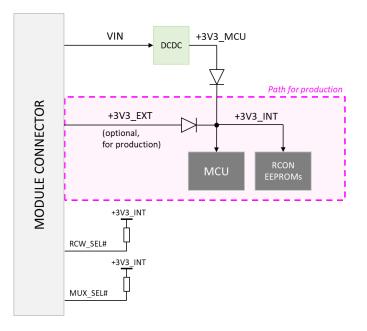


Figure 4-2 Power supplies: microcontroller

The onboard microcontroller is supplied by a 3.3V rail that is generated from a DCDC regulator fed by input supply. During the production test it is necessary to do some pre-programming which is achieved by connecting +3V3_EXT to an unpowered module.

+3V3_EXT is not necessary for standard customer baseboards and can be left unconnected.

There's no limitation with using RCW_SEL# for boot source selection when +3V3_EXT is omitted. This signal has an onboard pullup and only needs to be pulled low on the carrier if required.

The diode-ORing in Figure 4-2 is a simplified representation of the actual implementation, where +3V3_MCU (generated from input supply) takes precedence over +3V3_EXT.

4.3 Reset Structure

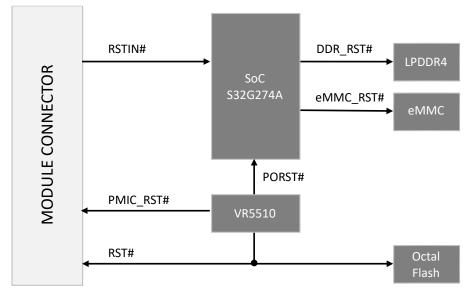


Figure 4-3 Reset Structure

The reset structure of the MPX-S32G399A module is shown in Figure 4-3. The board resets are controlled by the system power management chip (PMIC) VR5510.

When the onboard voltages of the module are within their limits, the power good signal in combination with the RSTIN# signal will release the PORST# of the SoC. PMIC_RST# controls both the SoC and peripheral devices. PMIC_RST# and RST# are identical signals. The only difference is that RST# could be disconnected by a zero-ohm resistor.

As RST# is bi-directional, it can also be used as JTAG reset.

The S32G399A provides dedicated reset signals for eMMC and LPDDR4 memories.

Signal Name	Function	Туре
RSTIN#	System Global Reset Input	100R series resistance / 10nF / 4k7 Pullup
RST#	System Global Reset / JTAG	Open Drain
PMIC_RST#	System Global Reset	Open Drain
PORST#	Power-On Reset for SoC	
DDR_RST#	Reset for LPDDR Memory	
EMMC_RST#	Reset for eMMC Memory	

Table 4-3 Reset signal overview

4.4 Clock Structure

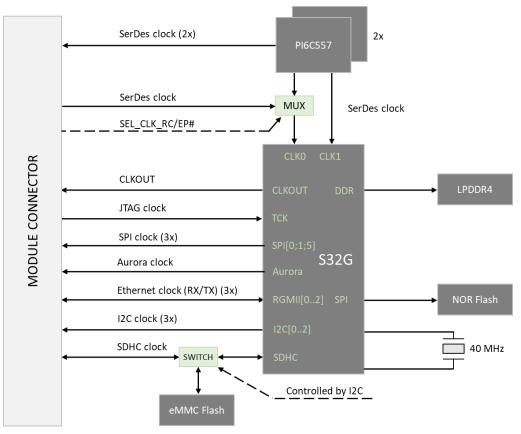


Figure 4-4 Clock Structure

The S32G399A offers two SerDes channels with four lanes in total which can be configured as PCIe or SGMII. To be compliant with the NXP documentation they are referred to as "PCIE0" and "PCIE1".

Each SerDes channel requires a clock which can be configured as 100MHz or 125MHz clock depending on PCIe or SGMII use.

J12	(PI6C557)		S32G399A "PCIE0" char			channel	
Pin	Signal		Pin	Signal	I/O Range	Signal conditioning	Frequency
15	CLK0+	\rightarrow	AB15	PCIE0_CLK_P	HCSL	SR: 33R PD: 49R9	100/125 MHz
14	CLK0-	\rightarrow	AC15	PCIE0_CLK_N	HCSL	SR: 33R PD: 49R9	100/125 MHz

J12	(PI6C557)		Module Connector				
Pin	Signal		Pin	Signal	I/O Range	Signal conditioning	Frequency
11	CLK1+	\rightarrow	B121	PCIE0_CLKC_P	HCSL	SR: 33R PD: 49R9	100/125 MHz
10	CLK1-	\rightarrow	B120	PCIE0_CLKC_N	HCSL	SR: 33R PD: 49R9	100/125 MHz

Table 8 PCIE0 clock: pin assignments

Channel 0 can also be configured as a PCIe Endpoint. In this case the SoC can be fed with an external clock from the carrier:

8	332G399A		Module Connector				
Ball	Signal		Pin	Signal	I/O Range	Signal conditioning	Frequency
AB15	PCIE0_CLK_P	←	T123	PCIE0_CLKIN_P	HCSL		100 MHz
AC15	PCIE0_CLK_N	←	T122	PCIE0_CLKIN_N	HCSL		100 MHz

Table 9 PCIe clock for endpoint configuration

Channel 1 is fed from J16:

J16	(PI6C557)		Module Connector				
Pin	Signal		Pin	Signal	I/O Range	Signal conditioning	Frequency
15	CLK0+	\rightarrow	B121	PCIE1_CLKC_P	HCSL	SR: 33R PD: 49R9	100/125 MHz
14	CLK0-	\rightarrow	B120	PCIE1_CLKC_N	HCSL	SR: 33R PD: 49R9	100/125 MHz

J16	(PI6C557)		Module Connector				
Pin	Signal		Pin	Signal	I/O Range	Signal conditioning	Frequency
11	CLK1+	\rightarrow	AB16	PCIE1_CLK_P	HCSL	SR: 33R PD: 49R9	100/125 MHz
10	CLK1-	\rightarrow	AC16	PCIE1_CLK_N	HCSL	SR: 33R PD: 49R9	100/125 MHz

Table 10 PCIE1 clock: pin assignments

The following table shows the available clocks configured as primary interface on the MPX-S32G399A:

S32G399A				Module Connector				
Ball	Signal		Pin	Signal	I/O Range	Signal conditioning	Frequency	
E19	SD0_CLK	\rightarrow	T2	SD_CLK	+VREF3	SR: 22R	t.b.d	
U12	DSPI0_SCK	\rightarrow	B68	PA13_DSPI0_SCK	+VREF3		t.b.d	
U10	DSPI1_SCK	\rightarrow	B74	PA08_DSPI1_SCK	+VREF3		t.b.d	
B8	DSPI5_SCK	\rightarrow	B79	PA09_DSPI5_SCK	+VREF3		t.b.d	
E7	I2C0_SCL	\rightarrow	B133	PB01_I2C0_SCL	+VREF3	PU: 2k7	400 kHz	
C6	I2C1_SCL	\rightarrow	B135	PB03_I2C1_SCL	+VREF3	PU: 4k7	400 kHz	
A6	I2C2_SCL	\rightarrow	B137	PB05_I2C2_SCL	+VREF3	PU: 4k7	400 kHz	
AC11	AUR_CLK_P	←	T97	AUR_CLK_P	+VREF1		t.b.d.	
AB11	AUR_CLK_N	←	T96	AUR_CLK_N	+VREF1		t.b.d.	
W9	тск	←	B82	JTAG_TCK	+VREF3	PD: 10k	t.b.d.	
V20	RGMII0_TX_ CLK	\rightarrow	T67	RGMII0_TX_ CLK	+VREF1	SR: 10R	125 MHz	
V21	RGMII0_RX_ CLK	←	T59	RGMII0_RX_ CLK	+VREF1	SR: 10R	125 MHz	
Y21	RGMII0_MDC	\rightarrow	T50	RGMII0_MDC	+VREF1	SR: 10R	< 10 MHz.	
P20	RGMII1_TX_ CLK	\rightarrow	T48	RGMII1_TX_ CLK	+VREF1	SR: 10R	125 MHz	
R21	RGMII1_RX_ CLK	←	T40	RGMII1_RX_ CLK	+VREF1	SR: 10R	125 MHz	
V23	RGMII1_MDC	\rightarrow	T31	RGMII1_MDC	+VREF1	SR: 10R	< 10 MHz	
N19	RGMII2_TX_ CLK	\rightarrow	T29	RGMII2_TX_ CLK	+VREF2	SR: 10R	125 MHz	
P21	RGMII2_RX_ CLK	←	T21	RGMII2_RX_ CLK	+VREF2	SR: 10R	125 MHz	
M19	RGMII2_MDC	\rightarrow	T12	RGMII2_MDC	+VREF2	SR: 10R	< 10 MHz	

Table 11 Clock: pin assignments

Boot Mode Configuration 4.5

The MPX-S32G399A module offers several different boot modes to choose from. The settings can be done via the MCU J27 on the module in case the FUSE_SEL fuse is not blown.

The S32G399A can retrieve the boot configuration (abbreviated: BOOT_CFG) either from fuses or from a serial EEPROM. This latter mode is called "RCON" mode.

$FUSE_SEL = 0$			
BOOTMOD0 (ball W10)	BOOTMOD1 (ball W11)	Ethernet boot config	Boot Mode
0	0	No Ethernet	Serial Boot
0	1	SGMII	Serial Boot
1	0		RCON
1	1		Reserved

Table 12 Boot mode settings (no fuse)

BOOTMOD1 (ball W11)	Ethernet boot config	Boot Mode
0		Fuene
1		Fuses
0		Serial Boot
1		Reserved
	(ball W11) 0 1	(ball W11) 0 1

Table 13 Boot mode settings (fuses)

In Serial RCON mode the BOOT_CFG bits are mapped to the EEPROM.

BOOT_CFG1[7:5] configures the boot devices:

BOOT_CFG1[7:5]	Boot Source	Description	Boot Location
000	QuadSPI Boot	Quad/Hyper/Octal Flash (see BOOT_CFG[4:2])	Module
010	SD Boot	SD Card	Carrier
011	eMMC Boot	eMMC	Module

Table 14 Boot devices

4.6 LEDs

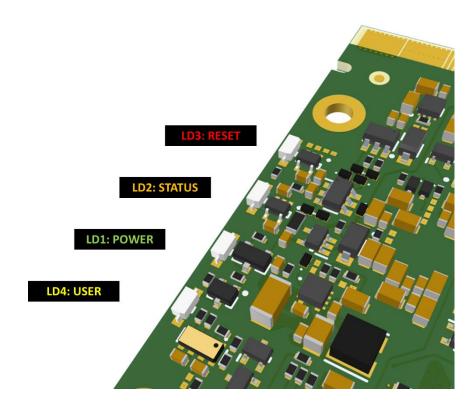


Figure 4-5 LEDs

There are four LEDs on the bottom side of the MPX-S32G399A module. The side-looker LEDs are placed near the edge of the PCB.

Reference	Color	Function			
LD1			Power-up sequence of the module is finished, power is good		
LUT		LED OFF:	Power fail		
LD2	Orange	LED ON:	SAFEIO error		
LDZ		LED OFF:	No error detected		
LD3	Red	LED ON:	Module / Peripheral reset is active		
EDS	LD3 Rea	LED OFF:	Reset is inactive		
	Vollow	LED ON:	User defined function (S32G, GPIO "PC_13" on ball Y7)		
LD4	Yellow	LED OFF:	User defined function (S32G, GPIO "PC_13" on ball Y7)		

Table 15 LED: pin description

4.7 RTC

The Real-Time Clock (RTC) is implemented with a Micro Crystal RV-3028-C7 chip:

- I²C clock frequency up to 400 kHz
- Operating temperature -40°C to 85°C
- Slave address according to Table 26
- 3.3V supply voltage

The RTC is supplied by 3.3V (reference voltage: +VREF4) and has an optional backup voltage that needs to be provided from the carrier if buffering is desired. The following table shows the internal connection:

Module Connector							
Pin	Signal	I/O Range	Description				
T133	VCC_RTC	1.1V – 5.5V	Battery backup voltage provided by the carrier (optional)				

Table 16 RTC: backup voltage

Automatic switchover is deactivated per default setting. Do <u>not</u> use "Direct Switching Mode" in case VCC_RTC > 3.3V, as I2C access to the RTC is disabled when the module is powered again. Use "Level Switching Mode" instead.

The RTC's interrupt output is connected to the CPU:

CPU		RV-3028-C7				
Ball	Signal		Pin	Signal	I/O Range	Signal conditioning
U9	RTC_IRQA#	←	2	INT#	+VREF3	PU: 4k7

Table 17 RTC: IRQ

4.8 Temperature sensors

The MPX-S32G399 module has two different temperature sensors.

4.8.1 TMP112

- I²C clock frequency up to 400 kHz
- Operating temperature -40°C to 125°C
- Slave addresses according to Table 26
- Local temperature monitoring
- Interrupt for thermal alert (configurable)
- ≤ 1% accuracy over temperature range

The temperature sensor provides an interrupt which is connected to the microcontroller.

GPIO Expander				ТМ	IP112	
Pin	Signal		Pin	Signal	I/O Range	Signal conditioning
14	THERM_ALERT1#	←	3	ALERT	VMCU	PU: MCU internal

Table 18 Temperature sensor: IRQ1

4.8.2 MCP9802

- I²C clock frequency up to 400 kHz
- Operating temperature -55°C to 125°C
- Slave addresses according to Table 26
- Local temperature monitoring
- Interrupt for thermal alert (configurable)
- ≤ 3% accuracy over temperature range

The temperature sensor provides an interrupt which is connected to the microcontroller.

GPIO Expander				ТМ	IP112	
Pin	Signal		Pin	Signal	I/O Range	Signal conditioning
22	THERM_ALERT2#	←	3	ALERT	VMCU	PU: MCU internal

Table 19 Temperature sensor: IRQ2

4.9 eFuse

S32G CPUs support fuse programming which requires an additional voltage "VDD_EFUSE" (1.8V typ.).

This voltage can be toggled on/off by GPIO "PD_11" on ball Y10 of the S32G.

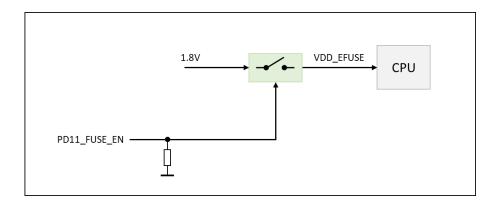


Figure 4-6 Fuse Programming

4.10 Serial Boot EEPROM (RCON)

In chapter 4.5 the boot modes were described. Two EEPROMs are installed on the module to store the settings for Serial RCON mode. Serial RCON mode always uses I2C0 on address 0x50 to load the board configuration.

The second EEPROM is accessible on address 0x56.

The addresses of the two EEPROMs can be swapped, thus each EEPROM can be used to load the board configuration. Swapping is achieved with the RCW_SEL# signal from the carrier.

According to Table 14 more than two boot devices are supported. J22 is classified as primary EEPROM to store the boot configuration for SD card boot. J14 is the secondary EEPROM used for any other boot configuration than SD card boot mode. The code can be loaded by the user, stored in the EEPROM, and selected via the carrier.

If the FUSE_SEL fuse is blown the SoC will always boot from fuses (FUSE_SEL = 1).

FUSE_SEL	SD / eMMC MUX	RCW_SEL#	De	scription
0 (normal	Microcontroller: • SD-Card	0	Boot from	J14 configuration
boot)			Boot from	J22 configuration
1 (boot from fuses)	Microcontroller: • SD-Card • eMMC	x	BOOT SOURCE DETERMINED BY FUSES	• SD-Card • eMMC • SPI NOR

Table 20 Boot configuration

There are two options for booting, either from fuses or from pin configuration. In either way the hardware routing must be set correctly in EEPROM, MCU respectively. See chapter 4.11 for details.

The boot source for RCW boot is determined by the configuration in any EEPROM. RCW_SEL# selects which configuration is finally loaded.

4.11 Microcontroller

The microcontroller (MCU) has been assigned the task as monitoring, supervising and control unit. It replaces the electronic DIP switch previously used on older revisions, providing enhanced and flexible options.

The MCU can be accessed via I2C interface with slave address according to Table 26. The communication with the device has been implemented via a register interface. The settings of MCU are stored in the boot EEPROMs used for RCON storage. Thus, the settings can be changed by RCW_SEL# pin.

Initial settings are programmed during production test and can be overridden via I2C.

4.11.1 Mode of operation

After power up of MCU, the power to CPU is kept disabled and reset line is active. MCU starts monitoring the supplies and temperatures. The content of current active EEPROM is read into local memory, boot config pins and multiplexer select are set, SAFEIO gets signaled, and system power gets turned on. After PMIC has turned on all power supplies, the MCU releases the reset line and starts the CPU.

The CPU boots and needs to inform MCU about start of normal operation. This stop signaling SAFEIO and starts the optional challenge response watchdog timer.

For safety purposes the microcontroller provides two signals, SAFEIO and KILL. Both share their pins with the SWD programming interface on T81 and T82 of the module connector. Both signals can be masked in settings to disable the output of the frequency if not needed.

SAFEIO and KILL toggle high and low, whereas permanent high or low states signal an error. The nominal frequency is 100 Hz.

Supervisor MCU permanently monitors the power rails as well as temperature sensors on the module. In case of undervoltage or overtemperature the module is set into safe state. This asserts the reset line of CPU and signals the error by stopping to toggle SAFEIO pin. The carrier could monitor this signal and set all peripherals in a safe state as long as the signal is not toggling.

In case of an overvoltage on any supply the MCU stops toggling the KILL signal. The carrier could monitor this signal and turn the system permanently off, for example by burning a fuse or similar.

4.11.2 Challenge Response Watchdog Timer

The CPU is connected to the MCU via I2C. After informing the MCU to be in normal operation mode, the challenge response watchdog timer needs to be serviced. It is implemented as a windowed WDT with a minimum and maximum reset time. The resolution is 1ms with a range of 0-65535 ms. Any reset before the minimum time results in a transition to safe state. No reset up to maximum time also results in a transition to safe state.

The minimum time can be set to 0 to disable this check and the maximum time can be set to 65535ms to disable the timeout check. Default values are 0ms minimum and 10s maximum.

To reset the watchdog timer the content of WDT-Response register should be read, its value should be incremented by one and bit 7 should be cleared. This value should be written into the WDT-Challenge register. The MCU increases this value by one, sets bit 7 and writes this new value into the WDT-Response register.

A wrong content in WDT-Response register should cause the application to take appropriate actions to deal with this violation. A wrong value written to WDT-Challenge register will result in a transition to safe state.

4.11.3	Register Interface
--------	--------------------

Register	Address	Description
WDT-WindowMin	0x00	Minimum CR-WD reset time in ms
WDT-WindowMax	0x02	Maximum CR-WD reset time in ms
WDT-Counter	0x04	read only CR-WD counter register (incremented once per ms)
WDT-Challenge	0x06	The challenge byte to WD-Counter
WDT-Response	0x07	The response byte from reset WD-Counter
CTRL-Operating	0x08	Write A8 to start operation mode (safeio clear, start WDT)
CTRL-Shutdown	0x09	Write A9 to shutdown system
CTRL-Reset	0x0A	Write AA to reset system
CTRL-Safeio	0x0B	Write AB or 0B to enable/disable safio output signal
CTRL-Kill	0x0C	Write AC or 0C to enable/disable safio output signal
CTRL-Pinconfig	0c0D	Configuration Pins Bit 0-3 set CFG 0-3 pins, Bit 4 sets SEL_EMMC_SDHC# See Table 23 Microcontroller: Hardware config pins
REV-HW	0x0E	read only Get HW revision
REV-FW-Major	0x0F	read only Get FW revision major
REV-FW-Customer	0x10	read only Get FW revision customer
REV-FW-Minor	0x11	read only Get FW revision minor
SELECT-EMMC-SD	0x12	Switch multiplexer to SD (0) or eMMC (1)
EEPROM_ACCESS	0x13	Select alternatively EEPROM (write1) or boot EEPROM (write 0) for following read/write accesses
FW-Update	0x20-0x4F	Description available on request

Table 21 Microcontroller: Register Interface

Register 0, 2 and 4 are treated as word registers and should be accessed accordingly.

Following table lists some sample commands from Linux

Register	Format	Example
WDT-WindowMin	set 0x00 [VALUE] w	i2cset -f -y 0 0x10 0x00 0xBBCC w
	get 0x00 w	i2cget -f -y 0 0x10 0x00 w
WDT-WindowMax	set 0x02 [VALUE] w	i2cset -f -y 0 0x10 0x02 10000 w
VVD1-VVIIIdowiviax	get 0x02 w	i2cget -f -y 0 0x10 0x02 w
WDT-Counter	get 0x04 w	i2cget -f -y 0 0x10 0x04 w
	set 0x06 value	i2cset -f -y 0 0x10 0x06 0x81
WDT-Challenge	get 0x06	i2cget -f -y 0 0x10 0x06

Register	Format	Example
WDT-Response	get 0x07	i2cget -f -y 0 0x10 0x07
CTRL-Operating	set 0x08 0xA8 get 0x08	i2cset -f -y 0 0x10 0x08 0xA8 i2cget -f -y 0 0x10 0x08
CTRL-Shutdown	set 0x09 0xA9	i2cset -f -y 0 0x10 0x09 0xA9
CTRL-Reset	set 0x0A 0xAA	i2cset -f -y 0 0x10 0x0A 0xAA
CTRL-Safeio	set 0x0B enable	i2cset -f -y 0 0x10 0x0B 0xAB
CTRL-Kill	set 0x0C enable	i2cset -f -y 0 0x10 0x0C 0xAC
CTRL-Pinconfig	set 0x0D [VALUE] get 0x0D	i2cset -f -y 0 0x10 0x0D 0x0B i2cget -f -y 0 0x10 0x0D
REV-HW	get 0x0E	i2cget -f -y 0 0x10 0x0E
REV-FW-Major	get 0x0F	i2cget -f -y 0 0x10 0x0F
REV-FW-Customer	get 0x10	i2cget -f -y 0 0x10 0x10
REV-FW-Minor	get 0x11	i2cget -f -y 0 0x10 0x11
SELECT-EMMC-SD	set 0x12 emmc_sd get 0x12	i2cset -f -y 0 0x10 0x12 0x01 i2cget -f -y 0 0x10 0x12
EEPROM-ACCESS	set 0x13 alternate get 0x13	i2cset -f -y 0 0x10 0x13 0x01 i2cget -f -y 0 0x10 0x13

Table 22 Microcontroller: Register sample access

4.11.4 Configuration storage

The configuration is stored in RCON EEPROMs. As two EEPROMs exist, it is possible to store two different settings and select one of these before boot by means of RCON_SEL pin. The configs are stored starting from address 0x10. It is not recommended to alter the content directly in EEPROM, but via the commands in MCU.

4.11.5 HW interfaces

At power-up the values for HW_CONFIGx pins are loaded from EEPROM as well as the SEL_EMMC_SDHC# multiplexer select.

HW_CONFIG_x	_CONFIG_x Signal Name		Description		
		1	PCIE1_CLK_P/N = 100 MHz (SoC PLL) PCIE1_CLKC_P/N = 100 MHz (ST1: B117 / B118)		
0	CLKGEN2_100M/125M#	0	PCIE1_CLK_P/N = 125 MHz (SoC PLL) PCIE1_CLKC_P/N = 125 MHz (ST1: B117 / B118)		
1			PCIE0_CLK_P/N = 100 MHz (SoC PLL) PCIE0_CLKC_P/N = 100 MHz (ST1: B120 / B121)		
, ,	CLKGEN1_100M/125M#	0	PCIE0_CLK_P/N = 125 MHz (SoC PLL) PCIE0_CLKC_P/N = 125 MHz (ST1: B120 / B121)		
2	2 PA03_BOOTMOD2		Bootmode Pin 2 (J1: W11) = 1		
Z			Bootmode Pin 2 (J1: W11) = 0		
3	PA02_BOOTMOD1	1	Bootmode Pin 1 (J1: W10) = 1		

HW_CONFIG_x	Signal Name		Description
		0	Bootmode Pin 1 (J1: W10) = 0

Table 23 Microcontroller: Hardware config pins

In case SEL_EMMC_SDHC# is high, the eMMC is routed to the CPU. If it is low the SDHC is routed to the CPU.

The microcontroller is programmed via SWD interface:

Connector Pin	SWD	SAFETY
T81	MCU_SWD_CLK	KILL
T82	MCU_SWD_DIO	SAFEIO
B124	MCU_SWD_RST#	

Table 24 Microcontroller SWD / safety signals

The alarm output of the two temperature sensors is connected to the MCU. If any sensor detects an overtemperature, the module turns into safe state. The alarm temperature can be programmed into the two sensors. See datasheet of these devices for more details.

4.12 Interface Description

In the following chapters the interfaces of the MPX-S32G399A module are described.

Due to pin multiplexing, there may be limitations regarding the availability of certain interfaces. Nevertheless, different pinouts are possible.

4.12.1 Definition of "Primary Interfaces"

The terms "primary", "secondary", ... do not imply any priority. The connector's pin names are derived from the primary functions defined by MicroSys.

Primary interfaces can also be configured for other interfaces. Nevertheless, high speed interfaces are optimized in layout, signals are length and often group matched. Multiplexing information for each pin can be found in the manufacturer's datasheet, some signals are used onboard (see chapter 10.6).

4.12.2 JTAG

The JTAG chain of the MPX-S32G399A includes the S32G399A processor only. The JTAG port is directly connected to the MXM module connector. The JTAG interface can also be configured as GPIO.

The pins are listed in the Appendix in chapter 10.4 and 10.5.

Some debuggers require a 10k pullup on TDI and TDO pins. These are not assembled on the module and may be provided externally for debugging.

4.12.3 AURORA

The Aurora port is a trace port consisting of 4 LVDS data pairs and a LVDS clock pair. The signals are available on the module connector as primary interface with no multiplexing options.

The pins are listed in the Appendix in chapter 10.4 and 10.5.

4.12.4 ADC

The ADC converter contained in the S32G399A processor has 12 multiplexed single-ended channels. They can be accessed via the MXM module connector and do not share their pins with other interfaces.

The pins are listed in the Appendix in chapter 10.4 and 10.5.

There is no protection on any ADC line against over-voltage or wrong polarity. Refer to the S32G399A datasheet for maximum ratings.

4.12.5 CAN

The S32G399A has 4 FlexCANs and 16 LLCE CANs. Due to pin multiplexing, there are limitations.

The MPX-S32G399A module realizes 18 CAN ports as primary interfaces on the module connector, two FlexCANs and 16 LLCE CANs. The ports support CAN2.0 version B and CAN FD protocols at data rates up to 8Mb/s. CAN transceivers are not installed on the module.

The CAN interfaces can also be configured as GPIO.

The pins are listed in the Appendix in chapter 10.4 and 10.5.

4.12.6 RGMII

The S32G399A provides MACs for three RGMII interfaces, each RGMII port has a dedicated MDIO interface.

The pins are listed in the Appendix in chapter 10.4 and 10.5.

RGMII2 is also shared with an ULPI interface for USB PHYs:

Module Connector	RGMII	ULPI			
T15	RGMII2_RXD3	USB_D7			
T16	RGMII2_RXD2	USB_D6			
T17	RGMII2_RXD1	USB_D5			
T18	RGMII2_RXD0	USB_D4			
T20	RGMII2_RXDV	USB_D3			
T21	RGMII2_RX_CLK	USB_D2			
T23	RGMII2_TXD3	USB_D1			
T24	RGMII2_TXD2	USB_D0			
T25	RGMII2_TXD1	USB_NXT			
T26	RGMII2_TXD0	USB_STP			
T28	RGMII2_TX_EN	USB_DIR			
T29	RGMII2_TX_CLK	USB_CLK			

Table 25 RGMII2 / ULPI pin multiplexing options

4.12.7 ULPI (USB)

The MPX-S32G399A does not have a USB PHY but a ULPI interface. The ULPI signals are not available as primary interface on the module connector, but they are shared with RGMII signals. For more details, please see chapter 4.12.6.

The ULPI interface can also be configured as GPIO.

The pins are listed in the Appendix in chapter 10.4 and 10.5.

4.12.8 I2C

The MPX-S32G399A module offers five I²C busses which run at up to 400kHz.

I2C3 is not available as primary interface.

I2C4 is explicitly used for the power management chip on the module.

The pins are listed in the Appendix in chapter 10.4 and 10.5.

Device	Device		A5	A4	A3	A2	A1	A0	R/W	Addr
Microcon- troller	S32K1	0	0	1	0	0	0	0	1/0	0x10
Temperature Sensor	MCP9802A0	1	0	0	1	0	0	0	1/0	0x48
Temperature	TMP112 (slave address)	1	0	0	1	0	0	1	1/0	0x49
Sensor	TMP112 (General Call reset address)	0	0	0	0	0	0	0	-/0	0x00
EEPROM	AT24C01C	1	0	1	0	0	0	0	1/0	0x50
RTC	RV-3028-C7	1	0	1	0	0	1	0	1/0	0x52
EEPROM	M24C64-DRMF3 (slave address)	1	0	1	0	1	0	0	1/0	0x54
LEFROM	M24C64-DRMF3 (identification page)	1	0	1	1	1	0	0	1/0	0x5C
EEPROM	AT24C01C	1	0	1	0	1	1	0	1/0	0x56
Multiplexer	PCA9540	1	1	1	0	0	0	0	1/0	0x70

I2C0 map:

Table 26 I2C0: bus map

I2C1 map:

Device	A6	A5	A4	A3	A2	A1	A0	R/W	Addr
	 -	-	-	-	-	-	-	-	-

Table 27 I2C1: bus map

I2C2 map:

Device	A6	A5	A4	A3	A2	A1	A0	R/W	Addr
	 -	-	-	-	-	-	-	-	-

Table 28 I2C2: bus map

I2C 3 is available by multiplexing functions. Primary interface is FlexCAN3.

I2C4 map:

Device		A6	A5	A4	A3	A2	A1	A0	R/W	Addr
PMIC	VR5510 Main logic	0	1	0	0	0	0	0	1/0	0x20
PMIC	VR5510 Fail-safe logic	0	1	0	0	0	0	1	1/0	0x21
PMIC	PF5300 debug mode	0	1	0	1	0	0	0	1/0	0x28

Table 29 I2C4: bus map

4.12.9 QSPI (Flash)

The MPX-S32G399A uses the QSPI port A to connect a serial NOR flash (8-bit bus).

The following table shows the internal connections:

S32G399A			SPI NOR Flash MT35XU512ABA1G12				
Ball	Signal		Pin	Signal	I/O Range		
G21	QSPI1_A_CS0#	\rightarrow	C2	CS#	1.8V		
K20	QSPI1_A_SCK	\rightarrow	B2	CLK	1.8V		
K23	QSPI_A_DQS	\leftarrow	C3	DQS			
			B3, E5, C1	GND			
L18	QSPI1_A_DATA0	\leftrightarrow	D3	D0	1.8V		
L19	QSPI1_A_DATA1	\leftrightarrow	D2	D1	1.8V		
L20	QSPI1_A_DATA2	\leftrightarrow	C4	D2	1.8V		
K22	QSPI1_A_DATA3	\leftrightarrow	D4	D3	1.8V		
K19	QSPI1_A_DATA4	\leftrightarrow	D5	D4	1.8V		
J23	QSPI1_A_DATA5	\leftrightarrow	E3	D5	1.8V		
H23	QSPI1_A_DATA6	\leftrightarrow	E2	D6	1.8V		
K18	QSPI1_A_DATA7	\leftrightarrow	E1	D7	1.8V		
			B4, E4, D1	+1.8V			
			A5	ECS	PU 1.8V		

Table 30 QSPI NOR Flash: pin assignments

4.12.10 SPI

The MPX-S32G399A has 6 SPI and 4 LLCE SPI interfaces. Due to pin multiplexing, there are limitations.

Three SPI interfaces (and no LLCE SPIs) are available as primary interfaces on the module connector.

SPI1 and SPI5 provide one chip select each, whereas SPI0 has two chip selects.

The SPI interfaces can also be configured as GPIO.

The pins are listed in the Appendix in chapter 10.4 and 10.5.

4.12.11 UART

The UART of the MPX-S32G399A module is used as debug console (LINFlex_0). It provides TTL levels and needs to be converted to RS-232 or USB on the carrier, for example.

As there is no dedicated UART controller, each UART requires one LINFlex controller configured for UART mode. The maximum number of available LINFLEX modules is three.

Port	Function	Module	Ball	I/O Power Domain	PRIMARY Pin Usage	Connector Pin	
PA_14	LIN0_RX	LINFlex_0	AA12	+VREF3	DSPI0_SIN	B69	
PC_10	LIN0_RX	LINFlex_0	Y12	+VREF3	UARTO_RX	B131	Microsys UART console input
PL_00	LIN0_RX	LINFlex_0	A12	+VREF4	LINO_RX	B105	
PA_15	LIN0_TX	LINFlex_0	W13	+VREF3	DSPI0_SOUT	B67	
PC_09	LIN0_TX	LINFlex_0	U11	+VREF3	UARTO_TX	B130	Microsys UART console output
PK_15	LIN0_TX	LINFlex_0	F10	+VREF3	LIN0_TX	B106	
PB_00	LIN1_RX	LINFlex_1	W12	+VREF3	12C0_SDA	B134	not availabe for UART muxing
PB_10	LIN1_RX	LINFlex_1	V11	+VREF3	DSPI0_CS2	B71	
PC_04	LIN1_RX	LINFlex_1	C13	+VREF4	LIN1_RX	B108	
PA_13	LIN1_TX	LINFlex_1	U12	+VREF3	DSPI0_SCK	B68	
PB_09	LIN1_TX	LINFlex_1	AA10	+VREF3	DSPI0_CS1	B70	
PC_08	LIN1_TX	LINFlex_1	B6	+VREF3	LIN1_TX	B109	
PB_12	LIN2_RX	LINFlex_2	F8	+VREF3	FXCAN2_TX	B99	
PE_01	LIN2_RX	LINFlex_2	M23	+VREF1	RGMII2_RXDV/USB_D3	T20	
PK_12	LIN2_RX	LINFlex_2	C14	+VREF4	CAN14_RX	B61	
PB_11	LIN2_TX	LINFlex_2	G8	+VREF3	FXCAN2_RX	B100	
PE_00	LIN2_TX	LINFlex_2	P21	+VREF1	RGMII2_RX CLK/USB_D2	T21	
PK_11	LIN2_TX	LINFlex_2	A9	+VREF3	CAN14_TX	B62]

Table 31 UART multiplexing options

For example:

Additional UARTs could be multiplexed to PC_04 & PC_08 (LINFlex_1) and PB_11 & PB12 (LINFlex_2), respectively.

4.12.12 LIN

The MPX-S32G399A has 3 LINFlex controllers which can be either configured for LIN or UART mode. Moreover, there are 4 LLCE LIN interfaces routed as primary interfaces to the module connector.

The LINFlexD controllers' pins are not available as primary interfaces on the connector but shared with other interfaces due to pin multiplexing.

The pins are listed in the Appendix in chapter 10.4 and 10.5.

4.12.13 FlexRay

The MPX-S32G399A has 1 LLCE FlexRay interface with dual channels as primary interface and another shared FlexRay interface due to pin multiplexing.

The pins are listed in the Appendix in chapter 10.4 and 10.5.

4.12.14 SDHC

The MPX-S32G399A module has an SDHC interface with 8 data bits.

It is either routed to an onboard eMMC memory (8-bit) or to the module connector (4-bit). The multiplexing is controlled by I2C via the MCU (see chapter 4.11.3 Register Interface).

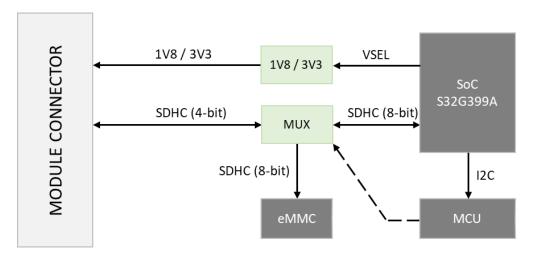


Figure 4-7 SDHC routing

Voltage is controlled by SD0_VSELECT from the SoC:

S32G399A Ball	Signal	Signal Conditioning		Function
C10			0	3.3V
619	G19 SD0_VSELECT PD: 10k	1	1.8V	

Table 32 SDHC voltage select

"VCC_SDHC_1V8/3V3" is a reference voltage which indicates the level of the supply voltage of the SDHC interface:

	J23					
Ball	Signal		Pin	Signal	I/O Range	Signal conditioning
B2	VCC_SDHC_1V8/ 3V3	\rightarrow	TK1	VCC_SDHC_1V8/ 3V3	1.8V / 3.3V	

4.12.15 SerDes

The S32G399A offers two SerDes channels with four lanes in total which can be configured as PCIe or SGMII. To be consistent with the NXP documentation they are referred to as "PCIE0" and "PCIE1".

Each SerDes channel requires a clock which can be configured as 100MHz or 125MHz clock depending on PCIe or SGMII use. More information on SerDes clocks can be obtained from chapter 4.4.

SerDes 0 ("PCIE0"):

Lane 0	Lane 1	Clock
PCI	100 MHz	
PCle x1	SGMII 1.25 Gbps	100 MHz
SGMII 1.25 Gbps	SGMII 1.25 Gbps	125 MHz (100 MHz)

Table 33 SerDes 0: working modes

SerDes 1 ("PCIE1"):

Lane 0	Lane 1	Clock				
PCI	PCIe x2					
PCle x1	SGMII 1.25 Gbps	100 MHz				
SGMII 1.25 Gbps	SGMII 1.25 Gbps	125 MHz (100 MHz)				
SGMII 3.125 Gbps	SGMII 1.25 Gbps	125 MHz				
SGMII 1.25 Gbps	SGMII 3.125 Gbps	125 MHz				
SGMII 3.125 Gbps	SGMII 3.125 Gbps	125 MHz				
PCIe x1 (Gen2)	SGMII 3.125 Gbps	100 MHz				

Table 34 SerDes 1: working modes

The MPX-S32G399A generates four clock pairs. Two of them are routed to the carrier ("CLKC") and the other two to the SerDes PLLs of the SoC ("CLKM"). For each SerDes "CLKC" and "CLKM" have the same frequency and can be controlled via microcontroller interface.

The S32G399A can also be used as a PCIe endpoint. In this case, SerDes 0 ("PCIE0") receives its clock pair from the carrier. To control the multiplexer on the module, "SEL_CLK_RC/EP#" needs to be driven low.

However, root complex (RC) or endpoint (EP) mode is determined via software.

Pin	Signal	Signal Conditioning		Function
			0	S32G399A is endpoint (clock from carrier)
T130	SEL_CLK_RC/EP#	PU: 10k	1	S32G399A is root complex (clock from module)

Table 35 SerDes: root complex / endpoint

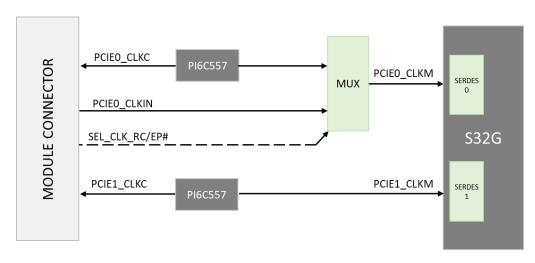


Figure 4-8 SerDes: clock routing

4.13 Differences between MPX-S32G274 and MPX-S32G399A

MPX-S32G274A and MPX-S32G399A have two typical differences related to hardware design.

First, S32G3 processor have more cores and higher performance. Therefore, they require more power. This must be considered for carrier board design when power supply is designed.

Second, S32G3 processors offer more SerDes configurations compared to S32G2 processors. That means, if a carrier board must support both processors, the design must implement an intersecting set of all SerDes modes.

NXP provides tables for "SerDes_0 working modes" and "SerDes_1 working modes" in the reference manual of the respective CPU.

4.14 Debug mode

When debugging the MPX-S32G module, users are recommended to set the VR5510 PMIC into debug mode. This is necessary to deactivate the watchdog in the PMIC that otherwise would power cycle the system if the CPU is halted by the debugger.

To set the PMIC into debug mode, follow the steps described below:

- 1. Apply a voltage of 5.0 V to the VDD_OTP pin of the module while applying power to the +VIN at the same time. Ensure that the PMIC_PWRON1 pin is LOW.
- 2. Release the PMIC_PWRON1 pin.
- 3. After a minimum of 8 ms, remove the voltage from the VDD_OTP pin. There is no maximum limit on the duration you can keep the VDD_OTP pin supplied. As long as the supply is kept on the VDD_OTP pin, the PMIC regulators are turned off.
- 4. The PMIC starts in debug mode after removing the supply to the VDD_OTP pin. According to the VR5510 datasheet:

In Debug mode, the Watchdog window is fully opened, the Deep Fail-safe request from the Fail-safe state machine (DFS = 1) is masked, the 8-second timer monitoring the RSTB pin is disabled and the Failsafe output pin FS0B cannot be released. Entering Standby mode is not possible while the device is in Debug mode.

5 Mechanical Description

5.1 Edge Connector

The MPX-S32G399A module has 314 edge finger contacts. Appropriate sockets on the carrier provide 314 pins with 0.5mm pitch and accept edge cards with a thickness of 1.2mm.

5.2 **Previous Numbering Scheme**

The numbering scheme is adopted from other MPX modules which used to have 310 edge fingers only. The reason for this was that you could previously choose from a broad variety of connectors on the market including 310-pin and 314-pin types.

310-pin connectors are obsolete now, the numbering scheme has remained the same.

5.3 Current Numbering Scheme

The differences between 310-pin and 314-pin connectors are four key "pins" that do not carry signals on 310-pin connectors. They are physically not present.

These key pins are, however, available on 314-pin connectors and on the MPX-S32G399A module carry signals. See Figure 5-1 for details:

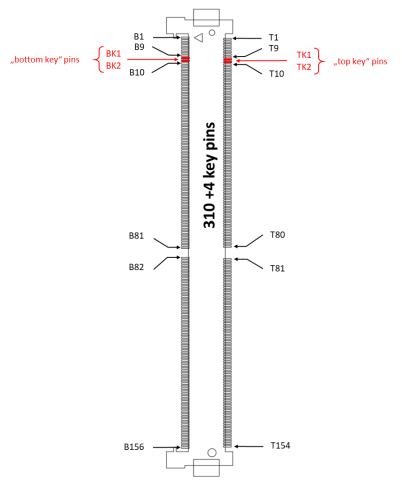


Figure 5-1 MXM Connector: pin definition

The original connector pinout definition was based on MM70-314-310B1-1-R300 which is now OBSOLETE.

314-pin connectors have pins between B9/B10 and T9/T10 which are now connected on the module! They are called "top key" and "bottom key" pins TK1, TK2, BK1, BK2.

5.4 Pin-Layout

The module has 314 pins, 310 pins and 4 pins previously used as key "pins" (see chapter 5.2).

The pin layout is asymmetric, so the pins are unequally distributed among top and bottom side edge fingers.

Side	Pin Count	Pin Labels
Bottom	158	"B1", … "B9", "BK1", "BK2" , "B10", … "B155", "B156"
Тор	156	"T1", "T9", "TK1", "TK2" , "T10", "T153", "T154"

Table 36 Connector pin naming scheme

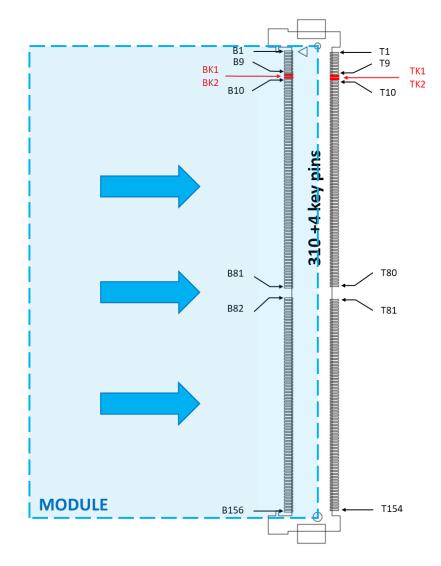


Figure 5-2 Connector orientation

The module connector is usually used for MXM3 graphic cards commonly found in notebooks. MicroSys changed the pin layout so that all 314 physically available pins can be used.

Alternatives - there are several connectors on the market that can be used if there are no conflicts with the mechanical dimensions of the module. The connectors usually have deviating mechanical pads thus drop-in replacements may require a combined PCB footprint. Please check the manufacturers' datasheets for details.

The recommended connectors for the MPX-S32G399A are:

Manufacturer	Ordercode	Board-to- board height	Plating	Comment
JAE	MM70-314B1-2-R300	3mm	0.3µm min. gold plating over Ni	
Foxconn	AS0B826-S55B-7H	2,7mm	10µm gold plating	
Foxconn	AS0B826-S78B-7H	5mm	10µm gold plating	314 pins
Aces	91782-3140M-001	5mm	3µm gold plating	
Yamaichi	CNU113-314-2201-VE	5mm	0.3µ" AU	

Table 37 Connector Types: Ordering Information

5.5 Mounting/ Unmounting

The mounting or unmounting of the module should only be made in a static free area with full ESD precautions, i.e. as a minimum, a grounded dissipative work surface of sufficient size and a grounded skin contact wrist strap are necessary. Make sure that all parts, the carrier, the module and the heatsink are placed on the same static free area to avoid any discharges between them during assembly.

To mount the MPX-S32G399A module, make sure that the carrier is disconnected from any power or other IO interfaces. Both connector surfaces of the module must be clean as well as the carrier connector should be checked for bent or dirty contacts. Check the module and the carrier for foreign or loose parts, which do not belong to the boards. The screws should have clean threads and be tightened with a maximum torque of 30Ncm.

Insert or remove the MPX-S32G399A module at an angle of about 25° as shown in the following figure.

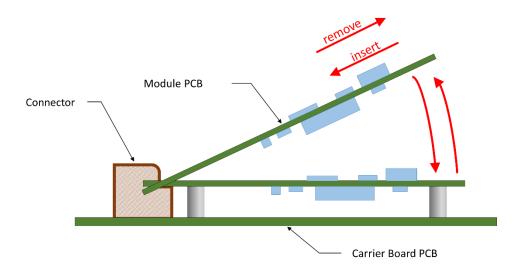


Figure 5-3 Module (un)mounting

The thermal conduction between heatsink and SoC is achieved using a thermal pad. Make sure that this thermal pad has the correct thickness and is placed over the SoC package before mounting the heatsink.

For the removal of the module, first unplug all connections to the system. Remove the inner screws, then the outer ones. The thermal pad may cause the heatsink to stick to the module, so take care when pulling them apart to avoid damaging any part of the module. Lift the module to about 25° and remove it from the connector. Store the parts on a static free area.

5.6 Board Outline

The following drawing shows the mechanical outline (82x50mm) of the MPX-S32G399A module:

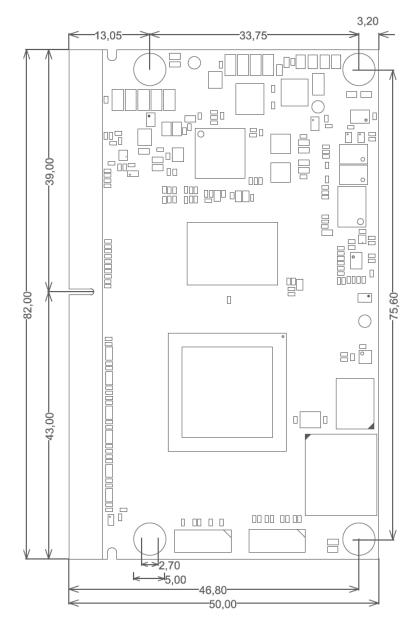


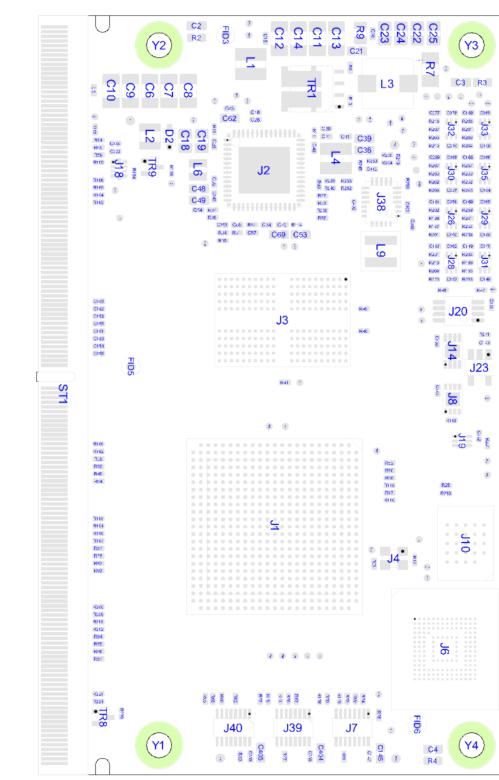
Figure 5-4 Board dimensions

The mounting holes require M2.5 screws.

For 3D data files please contact MicroSys.

5.7 Height




Figure 5-5 Construction height for parts

	Definition	Value
DIM. A	Module top side parts	3.00 mm
DIM. B	Module bottom side parts	1.80 mm
DIM. C	Carrier parts under the module	DIM. D minus DIM. B
DIM. D	Board-to-board height	Depends on connector type
DIM. E	Connector product height	Depends on connector type

Table 38 Construction height overview

5.8 Thickness

The PCB thickness of the MPX-S32G399A module is $1.2mm \pm 10\%$.

5.9 Component Layout - Top Side

Figure 5-6 Top Components

Part Reference	Туре	Function
ST1	Edge Connector	Connection to carrier
J1	S32G399A	SoC
J2	PMIC	Regulator, power management
J3	LPDDR4	Memory
J6	eMMC	Memory
J8	M24C64	EEPROM
J10	Serial NOR Flash	Memory
J14	Secondary Serial RCON	EEPROM
J19	TMP112	Temperature sensor
J23	MCP9802	Temperature Sensor
J38	PF53	Regulator

The following table defines the main components on the top side:

Table 39 Top side components

5.10 Component Layout – Bottom Side

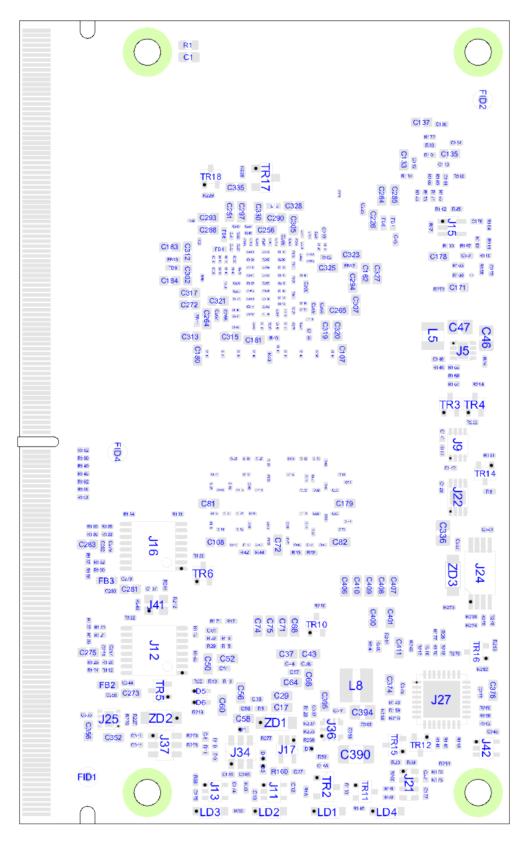


Figure 5-7 Bottom components

Part Reference	Туре	Function
J12	PI6C557	Clock Generator
J16	PI6C557	Clock Generator
J21	RV-3028-C7	RTC
J22	Primary Serial RCON	EEPROM
J27	S32K1	Microcontroller
LD1, LD2, LD3, LD4	Side Looker LED	Reset, Power, User LED

Table 40 Components on bottom

6 Software

6.1 U-Boot

The MPX-S32G399A uses U-Boot as the standard bootloader. The current version of U-Boot is pre-programmed in the boards QSPI Flash memory.

Additionally, there is a U-Boot version available for the SD card if that interface is implemented on the carrier. The standard MicroSys carrier (CRX-S32G) has an SD card interface.

Basically, the bootloader carries out the following tasks:

- Pin configuration
- SoC configuration
- Clock configuration
- LPDDR4 configuration and timing

6.2 Operating System

MicroSys Electronics GmbH offers Linux support for the module. Please refer to the MicroSys Software Enablement Guide for more details.

Other Operating Systems are available on request only.

7 Safety Requirements and Protective Regulations

7.1 EMC

The System on Module MPX-S32G399A is designed to meet requirements for electromagnetic compatibility. Nevertheless, there are several factors which in the target system may require measures against interference.

Active components, especially SoCs of the latest generation not only operate with high frequencies but also drive very fast signal rise times.

At least the following measures shall be applied:

- Provide sufficient block capacitors in the supply voltages
- Keep all clock lines short in order to prevent interference with other signals
- Shield clock lines with ground planes or keep as much distance as possible to other signals
- Provide filtering for all external signals
- Provide an EMI proof housing for final system

7.2 ESD

For technical reasons there is no ESD protection on the MPX-S32G399A. Please provide sufficient protection on the carrier and/or system level.

7.3 Reliability

The SoM MPX-S32G399A is available for operation in extended temperature range.

Please note that steady high temperature operation reduces lifetime of all electronic components. Make sure that no component on the module ever exceeds its maximum specified temperature during operation or storage. A reasonable cooling concept can dramatically increase the lifetime of the system.

The MPX-S32G399A is designed to withstand a high level of vibration and shock since there are no heavy and no overhanging components on the module. If desired, MicroSys Electronics GmbH can support you with your shock and vibration concept. Please ask your sales representative or send an email inquiry to <u>support@microsys.de</u>.

Relevant components on the module are chosen with values for a high level of derating.

7.4 Climatic conditions

The relative humidity during operation or storage of the module may not exceed 10% to 90%, non-condensing.

7.5 RoHS

All components on the MPX-S32G399A are RoHS compliant, also a RoHS compliant soldering process is used for manufacturing.

7.6 Storage Temperature

The storage temperature of the module is $-55^{\circ}C - +100^{\circ}C$.

8 General notes

Customers responsibility for chip errata:

It is the user's responsibility to make sure all errata published by the manufacturer of each component are taken note of.

The manufacturer's advice should be followed.

If desired, MicroSys Electronics GmbH can support you with your lifecycle management regarding chip errata. Please ask your sales representative or send an email inquiry to <u>support@microsys.de</u>.

9 History

Date	Version	Change Description
2024-09-27	6.0	First Version Revision 6 for MPX-S32G399A
2024-10-28	6.0	Changed Figure 4-7
2025-03-17	6.1	Added chapter 4.14 (Debug Mode)

Table 41 Document history

10 Appendix

10.1 Acronyms

These acronyms are being used within the document; note that this list does not claim to be complete or exhaustive:

4DC	Analog-to-Digital Converter
	Controller Area Network
ESD	Electrostatic Discharge
	General Public License
l²C	Inter-Integrated Circuit
JTAG	Joint Test Action Group
LED	Light Emitting Diode
LIN	Local Interconnect Network
LPDDR	Low Power Double Data Rate memory
MCU	Microcontroller Unit
PD	Pull-Down Resistor
PU	Pull-Up Resistor, Pull-Up Resistor
RGMII	Reduced Gigabit Media Independent Interface
RTC	Real-Time clock
SDHC	Secure Digital Host Controller
SerDes	Serializer Deserializer
SPI	Serial Peripheral Interface
UART	Universal Asynchronous Receiver Transmitter
ULPI	UTMI+ Low Pin Interface
USB	Universal Serial Bus

10.2 Table of Figures

Figure 3-1 Block Diagram	9
Figure 4-1 Power supplies: structure	21
Figure 4-2 Power supplies: microcontroller	22
Figure 4-3 Reset Structure	23
Figure 4-4 Clock Structure	24
Figure 4-5 LEDs	28
Figure 4-6 Fuse Programming	31
Figure 4-7 SDHC routing	44
Figure 4-8 SerDes: clock routing	46
Figure 5-1 MXM Connector: pin definition	49
Figure 5-2 Connector orientation	50
Figure 5-3 Module (un)mounting	52
Figure 5-4 Board dimensions	53
Figure 5-5 Construction height for parts	54
Figure 5-6 Top Components	55
Figure 5-7 Bottom components	57

10.3 Table of Tables

Table 1 Symbols	6
Table 2 Conventions	
Table 3 Safety and Handling Precautions	7
Table 4 Typical power consumption at U-Boot prompt Fehler! Textmarke nicht def	
Table 5 Typical power consumption running module with Linux	
Table 6 Maximum junction/case temperatures	
Table 7 Module connector: top pins	
Table 8 Module connector: bottom pins	
Table 9 Module connector: power pin assignments	
Table 10 PCIE0 clock: pin assignments	
Table 11 PCIe clock for endpoint configuration	
Table 12 PCIE1 clock: pin assignments	
Table 13 Clock: pin assignments	
Table 14 Boot mode settings (no fuse)	
Table 15 Boot mode settings (fuses)	
Table 16 Boot devices	
Table 17 LED: pin description	28
Table 18 RTC: backup voltage	
Table 19 RTC: IRQ	
Table 20 Temperature sensor: IRQ1	30
Table 21 Temperature sensor: IRQ2	
Table 22 Boot configuration	
Table 23 Microcontroller: Register Interface	
Table 24 Microcontroller: Register sample access	
Table 25 Microcontroller: Hardware config pins	
Table 26 Microcontroller SWD / safety signals	36
Table 27 RGMII2 / ULPI pin multiplexing options	38
Table 28 I2C0: bus map	39
Table 29 I2C1: bus map	40
Table 30 I2C2: bus map	40
Table 31 I2C4: bus map	40
Table 32 QSPI NOR Flash: pin assignments	41
Table 33 UART multiplexing options	42
Table 34 SDHC voltage select	44
Table 35 SerDes 0: working modes	45
Table 36 SerDes 1: working modes	45
Table 37 SerDes: root complex / endpoint	46
Table 38 Connector pin naming scheme	50
Table 39 Connector Types: Ordering Information	51
Table 40 Construction height overview	54
Table 41 Top side components	56
Table 42 Components on bottom	58
Table 43 Document history	63

10.4 Pin Definitions – Top

OUT = Output from module

IN = *Input to module*

Pin	Name	CPU Ball	GPIO	Group	Direction	Supply Voltage	PU/PD	PU/PD Value	Se- ries R/C
T1	GND			GND	_				
Т2	PC14_SD_CLK	E19	PC14	SDHC	OUT	VCC_SDHC_1V8/3V3			22R
Т3	GND			GND	_				
T4	PD15_SD_CMD	F21	PC15	SDHC	INOUT	VCC_SDHC_1V8/3V3			22R
T5	GND			GND	_				
Т6	PD00_SD_D0	G22	PD00	SDHC	INOUT	VCC_SDHC_1V8/3V3			OR
Τ7	PD01_SD_D1	E20	PD01	SDHC	INOUT	VCC_SDHC_1V8/3V3			OR
Т8	PD02_SD_D2	H19	PD02	SDHC	INOUT	VCC_SDHC_1V8/3V3			OR
Т9	PD03_SD_D3	H20	PD03	SDHC	INOUT	VCC_SDHC_1V8/3V3			OR
TK1	VCC_SDHC_1V8/3V3			Power / SDHC					
TK2	PMIC_FCCU1_OUT			CTRL	OUT	+VREF4 (3V3)	PU	5k1	
T10	GND			GND					
T11	GND			GND					
T12	PF00_RGMII2_MDC/DSPI0_CS7	M19	PF00	RGMII	OUT	+VREF1 (1V8)			10R
T13	PF01_RGMII2_MDIO	L22	PF01	RGMII	INOUT	+VREF1 (1V8)	PU	10k	
T14	GND			GND					
T15	PH00_RGMII2_RXD3/USB_D7	N23	PH00	RGMII / ULPI	IN / INOUT	+VREF1 (1V8)			
T16	PL14_RGMII2_RXD2/USB_D6	M21	PL14	RGMII / ULPI	IN / INOUT	+VREF1 (1V8)			
T17	PL13_RGMII2_RXD1/USB_D5	N21	PL13	RGMII / ULPI	IN / INOUT	+VREF1 (1V8)			

T18	PL12_RGMII2_RXD0/USB_D4	N20	PL12	RGMII / ULPI	IN / INOUT	+VREF1 (1V8)			
T19	GND			GND					
T20	PE01_RGMII2_RXDV/USB_D3	M23	PE01	RGMII / ULPI	IN / INOUT	+VREF1 (1V8)			
T21	PE00_RGMII2_RX_CLK/USB_D2	P21	PE00	RGMII / ULPI	IN / INOUT	+VREF1 (1V8)			
T22	GND			GND					
T23	PD15_RGMII2_TXD3/USB_D1	L21	PD15	RGMII / ULPI	OUT / INOUT	+VREF1 (1V8)			10R
T24	PD14_RGMII2_TXD2/USB_D0	P23	PD14	RGMII / ULPI	OUT / INOUT	+VREF1 (1V8)			10R
T25	PL11_RGMII2_TXD1/USB_NXT	N22	PL11	RGMII / ULPI	OUT / IN	+VREF1 (1V8)			10R
T26	PL10_RGMII2_TXD0/USB_STP	P22	PL10	RGMII / ULPI	OUT / OUT	+VREF1 (1V8)			10R
T27	GND			GND					
T28	PL09_RGMII2_TX_EN/USB_DIR	L23	PL09	RGMII / ULPI	OUT / IN	+VREF1 (1V8)			10R
T29	PL08_RGMII2_TX_CLK/USB_CLK	N19	PL08	RGMII / ULPI	OUT / IN	+VREF1 (1V8)			10R
Т30	GND			GND					
T31	PD12_RGMII1_MDC	V23	PD12	RGMII	OUT	+VREF1 (1V8)			10R
T32	PD13_RGMII1_MDIO	R19	PD13	RGMII	INOUT	+VREF1 (1V8)	PU	10k	
Т33	GND			GND					
T34	PE13_RGMII1_RXD3	U21	PE13	RGMII	IN	+VREF1 (1V8)			
T35	PE12_RGMII1_RXD2	N18	PE12	RGMII	IN	+VREF1 (1V8)			
T36	PE11_RGMII1_RXD1	P18	PE11	RGMII	IN	+VREF1 (1V8)			
T37	PE10_RGMII1_RXD0	P19	PE10	RGMII	IN	+VREF1 (1V8)			
T38	GND			GND					
Т39	PE09_RGMII1_RXDV	R23	PE09	RGMII	IN	+VREF1 (1V8)			
T40	PE08_RGMII1_RX_CLK	R21	PE08	RGMII	IN	+VREF1 (1V8)			
T41	GND			GND					
T42	PE07_RGMII1_TXD3	T21	PE07	RGMII	OUT	+VREF1 (1V8)			10R
T43	PE06_RGMII1_TXD2	U22	PE06	RGMII	OUT	+VREF1 (1V8)			10R
T44	PE05_RGMII1_TXD1	T22	PE05	RGMII	OUT	+VREF1 (1V8)			10R

					0.17				
T45	PE04_RGMII1_TXD0	T23	PE04	RGMII	OUT	+VREF1 (1V8)			10R
T46	GND			GND					
T47	PE03_RGMII1_TX_EN	U23	PE03	RGMII	OUT	+VREF1 (1V8)			10R
T48	PE02_RGMII1_TX_CLK	P20	PE02	RGMII	OUT	+VREF1 (1V8)			10R
T49	GND			GND					
T50	PF02_RGMII0_MDC	Y21	PF02	RGMII	OUT	+VREF1 (1V8)			10R
T51	PE15_RGMII0_MDIO	V17	PE15	RGMII	INOUT	+VREF1 (1V8)	PU	10k	
T52	GND			GND					
T53	PH09_RGMII0_RXD3	W22	PH09	RGMII	IN	+VREF1 (1V8)			
T54	PH08_RGMII0_RXD2	W21	PH08	RGMII	IN	+VREF1 (1V8)			
T55	PH07_RGMII0_RXD1	Y23	PH07	RGMII	IN	+VREF1 (1V8)			
T56	PH06_RGMII0_RXD0	T20	PH06	RGMII	IN	+VREF1 (1V8)			
T57	GND			GND					
T58	PH05_RGMII0_RXDV	W23	PH05	RGMII	IN	+VREF1 (1V8)			
T59	PH04_RGMII0_RX_CLK	V21	PH04	RGMII	IN	+VREF1 (1V8)			
T60	GND			GND					
T61	PH03_RGMII0_TXD3	U20	PH03	RGMII	OUT	+VREF1 (1V8)			10R
T62	PH02_RGMII0_TXD2	U18	PH02	RGMII	OUT	+VREF1 (1V8)			10R
T63	PH01_RGMII0_TXD1	T19	PH01	RGMII	OUT	+VREF1 (1V8)			10R
T64	PJ00_RGMII0_TXD0	U19	PJ00	RGMII	OUT	+VREF1 (1V8)			10R
T65	GND			GND					
T66	PE14_RGMII0_TX_EN	T18	PE14	RGMII	OUT	+VREF1 (1V8)			10R
T67	PH10_RGMII0_TX_CLK	V20	PH10	RGMII	OUT	+VREF1 (1V8)			10R
T68	GND			GND					
T69	PCIE1_RX0_N	AB22		SERDES	IN	+VREF1 (1V8)			
T70	PCIE1_RX0_P	AA22		SERDES	IN	+VREF1 (1V8)			
T71	GND			GND					

T72	PCIE1_RX1_N	AC21	 SERDES	IN	+VREF1 (1V8)			
T73	PCIE1_RX1_P	AB21	 SERDES	IN	+VREF1 (1V8)			
T74	GND		 GND					
T75	PCIE0_RX0_N	AC19	 SERDES	IN	+VREF1 (1V8)			
T76	PCIE0_RX0_P	AB19	 SERDES	IN	+VREF1 (1V8)			
T77	GND		 GND					
T78	PCIE0_RX1_N	AC18	 SERDES	IN	+VREF1 (1V8)			
T79	PCIE0_RX1_P	AB18	 SERDES	IN	+VREF1 (1V8)			
T80	GND		 GND					
T81	KILL/MCU_SWD_CLK		 MICROCONTROLLER	IN	'+3V3_EXT / _INT	PD	10K	
T82	SAFEIO/MCU_SWD_DIO		 MICROCONTROLLER	OUT	'+3V3_EXT / _INT	PU	10K	
T83	GND		 GND					
T84	PCIE1_TX0_N	Y19	 SERDES	OUT	+VREF1 (1V8)			220nF
T85	PCIE1_TX0_P	W19	 SERDES	OUT	+VREF1 (1V8)			220nF
T86	GND		 GND					
T87	PCIE1_TX1_N	Y18	 SERDES	OUT	+VREF1 (1V8)			220nF
T88	PCIE1_TX1_P	W18	 SERDES	OUT	+VREF1 (1V8)			220nF
T89	GND		 GND					
Т90	PCIE0_TX0_N	Y16	 SERDES	OUT	+VREF1 (1V8)			220nF
T91	PCIE0_TX0_P	W16	 SERDES	OUT	+VREF1 (1V8)			220nF
T92	GND		 GND					
Т93	PCIE0_TX1_N	Y15	 SERDES	OUT	+VREF1 (1V8)			220nF
Т94	PCIE0_TX1_P	W15	 SERDES	OUT	+VREF1 (1V8)			220nF
T95	GND		 GND					
T96	AUR_CLK_N	AB11	 AURORA	IN	+VREF1 (1V8)			
T97	AUR_CLK_P	AC11	 AURORA	IN	+VREF1 (1V8)			

Т98	GND			GND			 	
Т99	AUR_TX2_N	AB9		AURORA	OUT	+VREF1 (1V8)	 	
T100	AUR_TX2_P	AC9		AURORA	OUT	+VREF1 (1V8)	 	
T101	GND			GND			 	
T102	AUR_TX0_N	AB8		AURORA	OUT	+VREF1 (1V8)	 	
T103	AUR_TX0_P	AC8		AURORA	OUT	+VREF1 (1V8)	 	
T104	GND			GND			 	
T105	AUR_TX1_N	AC6		AURORA	OUT	+VREF1 (1V8)	 	
T106	AUR_TX1_P	AB6		AURORA	OUT	+VREF1 (1V8)	 	
T107	GND			GND			 	
T108	AUR_TX3_N	AC5		AURORA	OUT	+VREF1 (1V8)	 	
T109	AUR_TX3_P	AB5		AURORA	OUT	+VREF1 (1V8)	 	
T110	GND			GND			 	
T111	PB02	D7	PB02	GPIO	INOUT	+VREF3 (3V3)	 	
T112	PB07	A5	PB07	GPIO	INOUT	+VREF3 (3V3)	 	
T113	PB08	F7	PB08	GPIO	INOUT	+VREF3 (3V3)	 	
T114	PB15	B5	PB15	GPIO	INOUT	+VREF3 (3V3)	 	
T115	PC00	V9	PC00	GPIO	INOUT	+VREF3 (3V3)	 	
T116	GND			GND			 	
T117	+VREF1			POWER		1V8 Reference Output	 	
T118	+VREF2			POWER		1V8 Reference Output	 	
T119	+VREF3			POWER		3V3 Reference Output	 	
T120	+VREF4			POWER		3V3 Reference Output	 	
T121	GND			GND			 	
T122	PCIE0_CLKIN_N	AC15		SERDES	IN	+VREF1 (1V8)	 	

T123	PCIE0_CLKIN_P	AB15	 SERDES
T124	GND		 GND
T125	NMI	G6	 CTRL
T126	PMIC_RST#		 CTRL
T127	RSTIN#		 CTRL
T128	RST#		 CTRL
T129	GND		 GND
T130	SEL_CLK_RC/EP#		 CTRL
T131	RCW_SEL#		 CTRL
T132	RESERVED		 CTRL
T133	VCC_RTC		 POWER
T134	+3V3_EXT		 PRODUCTION
T135	I2C_SCL_PROG		 PRODUCTION
T136	I2C_SDA_PROG		 PRODUCTION
T137	GND		 GND
T138	GND		 GND
T139	GND		 GND
T140	GND		 GND
T141	GND		 GND
T142	GND		 GND
T143	GND		 GND
T144	GND		 GND
T145	GND		 GND

IN	+VREF1 (1V8)			
IN	+VREF3 (3V3)	PU	4k7	
OUT	+VREF4 (3V3)	PU	2k2	
IN	+VREF4 (3V3)	PU	4k7	100R
OUT	+VREF4 (3V3)	PU	2k2	
IN	+VREF4 (3V3)	PU	10k	
IN	+3V3_INT	PU	4k7	
IN	+3V3_INT	PU	10k	
	RTC Backup Supply: Module Input (0.9V - 5.5V)			
	Programming Voltage: Module Input (3.3V ± 5%)			
OUT	+3V3_EXT / _INT	PU	2k7	
INOUT	+3V3_EXT / _INT	PU	2k7	

T146	+VIN	 	POWER	6-36V	 	
T147	+VIN	 	POWER	6-36V	 	
T148	+VIN	 	POWER	6-36V	 	
T149	+VIN	 	POWER	6-36V	 	
T150	+VIN	 	POWER	6-36V	 	
T151	+VIN	 	POWER	6-36V	 	
T152	+VIN	 	POWER	6-36V	 	
T153	+VIN	 	POWER	6-36V	 	
T154	+VIN	 	POWER	6-36V	 	

10.5 Pin Definitions – Bottom

OUT = Output from module

IN = *Input to module*

Pin	Name	CPU Ball	Target	Group	Direction	Supply Voltage	PU/PD	PU/PD Value	Series R/C
B1	ADC_CH_11	C21		ADC	IN	+VREF1 (1V8)			
B2	ADC_CH_10	A20		ADC	IN	+VREF1 (1V8)			
B3	GND			GND					
B4	ADC_CH_09	B20		ADC	IN	+VREF1 (1V8)			
B5	ADC_CH_08	A19		ADC	IN	+VREF1 (1V8)			
B6	GND			GND					
B7	ADC_CH_07	C22		ADC	IN	+VREF1 (1V8)			
B8	ADC_CH_06	D23		ADC	IN	+VREF1 (1V8)			
B9	GND			GND					
BK1	PMIC_STBY#			CTRL	OUT	+VREF4 (3V3)	PU	10k	
BK2	PMIC_STBY_PGOOD			CTRL	OUT	+VREF4 (3V3)			
B10	ADC_CH_05	B22		ADC	IN	+VREF1 (1V8)			
B11	ADC_CH_04	B21		ADC	IN	+VREF1 (1V8)			
B12	GND			GND					
B13	ADC_CH_03	D22		ADC	IN	+VREF1 (1V8)			
B14	ADC_CH_02	E23		ADC	IN	+VREF1 (1V8)			
B15	GND			GND					
B16	ADC_CH_01	E22		ADC	IN	+VREF1 (1V8)			
B17	ADC_CH_00	F23		ADC	IN	+VREF1 (1V8)			

🙌 MicroSys

B18	GND			GND			 	
B19	PC11_CAN00_RX	F15	PC11	CAN	IN	+VREF4 (3V3)	 	
B20	PC12_CAN00_TX	G11	PC12	CAN	OUT	+VREF3 (3V3)	 	
B21	GND			GND			 	
B22	PJ02_CAN01_RX	D17	PJ02	CAN	IN	+VREF4 (3V3)	 	
B23	PJ01_CAN01_TX	B11	PJ01	CAN	OUT	+VREF3 (3V3)	 	
B24	GND			GND			 	
B25	PJ04_CAN02_RX	C15	PJ04	CAN	IN	+VREF4 (3V3)	 	
B26	PJ03_CAN02_TX	D10	PJ03	CAN	OUT	+VREF3 (3V3)	 	
B27	GND			GND			 	
B28	PJ06_CAN03_RX	D15	PJ06	CAN	IN	+VREF4 (3V3)	 	
B29	PJ05_CAN03_TX	C11	PJ05	CAN	OUT	+VREF3 (3V3)	 	
B30	GND			GND			 	
B31	PJ08_CAN04_RX	F16	PJ08	CAN	IN	+VREF4 (3V3)	 	
B32	PJ07_CAN04_TX	D12	PJ07	CAN	OUT	+VREF3 (3V3)	 	
B33	GND			GND			 	
B34	PJ10_CAN05_RX	D16	PJ10	CAN	IN	+VREF4 (3V3)	 	
B35	PJ09_CAN05_TX	B12	PJ09	CAN	OUT	+VREF3 (3V3)	 	
B36	GND			GND			 	
B37	PJ12_CAN06_RX	E16	PJ12	CAN	IN	+VREF4 (3V3)	 	
B38	PJ11_CAN06_TX	E12	PJ11	CAN	OUT	+VREF3 (3V3)	 	
B39	GND			GND			 	
B40	PJ14_CAN07_RX	C16	PJ14	CAN	IN	+VREF4 (3V3)	 	
B41	PJ13_CAN07_TX	A11	PJ13	CAN	OUT	+VREF3 (3V3)	 	
B42	GND			GND			 	

76/82

B43	PK00_CAN08_RX	A15	РКОО	CAN	IN	+VREF4 (3V3)	 	
B44	PJ15_CAN08_TX	A10	PJ15	CAN	OUT	+VREF3 (3V3)	 	
B45	GND			GND			 	
B46	PK02_CAN09_RX	D14	PK02	CAN	IN	+VREF4 (3V3)	 	
B47	PK01_CAN09_TX	F11	PK01	CAN	OUT	+VREF3 (3V3)	 	
B48	GND			GND			 	
B49	PK04_CAN10_RX	F14	РК04	CAN	IN	+VREF4 (3V3)	 	
B50	PK03_CAN10_TX	E11	РК03	CAN	OUT	+VREF3 (3V3)	 	
B51	GND			GND			 	
B52	PK06_CAN11_RX	B15	РК06	CAN	IN	+VREF4 (3V3)	 	
B53	PK05_CAN11_TX	D11	РК05	CAN	OUT	+VREF3 (3V3)	 	
B54	GND			GND			 	
B55	PK08_CAN12_RX	F13	PK08	CAN	IN	+VREF4 (3V3)	 	
B56	PK07_CAN12_TX	C10	РК07	CAN	OUT	+VREF3 (3V3)	 	
B57	GND			GND			 	
B58	PK10_CAN13_RX	E14	PK10	CAN	IN	+VREF4 (3V3)	 	
B59	PK09_CAN13_TX	E10	РК09	CAN	OUT	+VREF3 (3V3)	 	
B60	GND			GND			 	
B61	PK12_CAN14_RX	C14	PK12	CAN	IN	+VREF4 (3V3)	 	
B62	PK11_CAN14_TX	A9	PK11	CAN	OUT	+VREF3 (3V3)	 	
B63	GND			GND			 	
B64	PK14_CAN15_RX	B13	PK14	CAN	IN	+VREF4 (3V3)	 	
B65	PK13_CAN15_TX	C9	PK13	CAN	OUT	+VREF3 (3V3)	 	
B66	GND			GND			 	
B67	PA15_DSPI0_SOUT	W13	PA15	SPI	OUT	+VREF3 (3V3)	 	

V6.1	
© MicroSys Electronics GmbH 2025	

_			
	7	7/82	

B68	PA13_DSPI0_SCK	U12	PA13	SPI	OUT	+VREF3 (3V3)			
B69	PA14_DSPI0_SIN	AA12	PA14	SPI	IN	+VREF3 (3V3)			
B70	PB09_DSPI0_CS1	AA10	PB09	SPI	OUT	+VREF3 (3V3)			
B71	PB10_DSPI0_CS2	V11	PB10	SPI	OUT	+VREF3 (3V3)			
B72	GND			GND					
B73	PA06_DSPI1_SOUT	Y9	PA06	SPI	OUT	+VREF3 (3V3)			
B74	PA08_DSPI1_SCK	U10	PA08	SPI	OUT	+VREF3 (3V3)			
B75	PF15_DSPI1_SIN	U8	PF15	SPI	IN	+VREF3 (3V3)			
B76	PA07_DSPI1_CS0	Y11	PA07	SPI	IN	+VREF3 (3V3)			
B77	GND			GND					
B78	PA11_DSPI5_SOUT	D8	PA11	SPI	OUT	+VREF3 (3V3)			
B79	PA09_DSPI5_SCK	B8	PA09	SPI	OUT	+VREF3 (3V3)			
B80	PA10_DSPI5_SIN	E13	PA10	SPI	IN	+VREF4 (3V3)			
B81	PA12_DSPI5_CS0	C7	PA12	SPI	IN	+VREF3 (3V3)			
B82	PA04_JTAG_TCK	W9	PA04	JTAG	IN	+VREF3 (3V3)	PD	10k	
B83	PA01_JTAG_TDO	AA7	PA01	JTAG	OUT	+VREF3 (3V3)			
B84	PA00_JTAG_TDI	V7	PA00	JTAG	IN	+VREF3 (3V3)			
B85	PA05_JTAG_TMS	U7	PA05	JTAG	IN	+VREF3 (3V3)	PU	10k	
B86	JCOMP	W7		JTAG	IN	+VREF3 (3V3)	PD	10k	
B87	GND			GND					
B88	PF03_CLKOUT0	V14	PF03	CLOCK	OUT	+VREF1 (1V8)			
B89	PF04_CLKOUT1	V13	PF04	CLOCK	OUT	+VREF1 (1V8)			
B90	GND			GND					
B91	PL03_FLXR0A_RX_D	A13	PL03	FLEXRAY	IN	+VREF4 (3V3)			
B92	PL02_FLXR0A_TX_D	A8	PL02	FLEXRAY	OUT	+VREF3 (3V3)			

B93	PL01_FLXR0A_TXEN#	E9	PL01	FLEXRAY	OUT	+VREF3 (3V3)			
B94	GND			GND					
B95	PL06_FLXR0B_RX_D	D13	PL06	FLEXRAY	IN	+VREF4 (3V3)			
B96	PL05_FLXR0B_TX_D	C8	PL05	FLEXRAY	OUT	+VREF3 (3V3)			
B97	PL04_FLXR0B_TXEN#	A7	PL04	FLEXRAY	OUT	+VREF3 (3V3)			
B98	GND			GND					
B99	PB12_FXCAN2_RX	F8	PB12	CAN	IN	+VREF3 (3V3)			
B100	PB11_FXCAN2_TX	G8	PB11	CAN	OUT	+VREF3 (3V3)			
B101	GND			GND					
B102	PB14_FXCAN3_RX	E6	PB14	CAN	IN	+VREF3 (3V3)			
B103	PB13_FXCAN3_TX	G7	PB13	CAN	OUT	+VREF3 (3V3)			
B104	GND			GND					
B105	PLO0_LIN0_RX	A12	PL00	LIN	IN	+VREF4 (3V3)			
B106	PK15_LIN0_TX	F10	PK15	LIN	OUT	+VREF3 (3V3)			
B107	GND			GND					
B108	PC04_LIN1_RX	C13	PC04	LIN	IN	+VREF4 (3V3)			
B109	PC08_LIN1_TX	B6	PC08	LIN	OUT	+VREF3 (3V3)			
B110	GND			GND					
B111	PC06_LIN2_RX	A14	PC06	LIN	IN	+VREF4 (3V3)			
B112	PC05_LIN2_TX	G10	PC05	LIN	OUT	+VREF3 (3V3)			
B113	GND			GND					
B114	PL07_LIN3_RX	G13	PL07	LIN	IN	+VREF4 (3V3)			
B115	PC07_LIN3_TX	B9	PC07	LIN	OUT	+VREF3 (3V3)			
B116	GND			GND					
B117	PCIE1_CLKC_N			SERDES	OUT	+VREF4 (3V3)	PD	49R9	33R

 _	_	_	_

79/82

B119	GND			GND					
B120	PCIE0_CLKC_N			SERDES	OUT	+VREF4 (3V3)	PD	49R9	33R
B121	PCIE0_CLKC_P			SERDES	OUT	+VREF4 (3V3)	PD	49R9	33R
B122	GND			GND					
B123	PMIC_FSOUT#			CTRL	OUT	+VREF3 (3V3)	PU	4k7	OR
D124				CTRL	IN	+VREF4 (3V3)	PD	10k	OR
B124	PMIC_FIN/MCU_SWD_RST#			MICROCONTROLLER	IN	'+3V3_EXT / +3V3_INT	PU	10k	OR
B125	VDD_OTP			DEBUG		Optional debug voltage for PMIC Typ. 7.5V	PD	470k	
B126	PMIC_PWRON1			CTRL	IN	+VIN	PU	5k11	
B127	PMIC_PSYNC			CTRL	IN	+VREF4 (3V3)	PD	OR	
B128	PMIC_FOUT/AMUX			CTRL	OUT	+VREF4 (3V3)			
B129	GND			GND					
B130	PC09_UART0_TX	U11	PC09	UART	OUT	+VREF3 (3V3)			
B131	PC10_UART0_RX	Y12	PC10	UART	IN	+VREF3 (3V3)			
B132	GND			GND					
B133	PB01_I2C0_SCL	E7	PB01	12C	OUT	+VREF3 (3V3)	PU	4k7	
B134	PB00_I2C0_SDA	W12	PB00	12C	INOUT	+VREF3 (3V3)	PU	4k7	
B135	PB03_I2C1_SCL	C6	PB03	12C	OUT	+VREF3 (3V3)	PU	4k7	
B136	PB04_I2C1_SDA	E8	PB04	12C	INOUT	+VREF3 (3V3)	PU	4k7	
B137	PB05_I2C2_SCL	A6	PB05	12C	OUT	+VREF3 (3V3)	PU	4k7	
B138	PB06_I2C2_SDA	G9	PB06	12C	INOUT	+VREF3 (3V3)	PU	4k7	
B139	GND			GND					
B140	GND			GND					

OUT

SERDES

+VREF4 (3V3)

B118 PCIE1_CLKC_P

33R

49R9

PD

B141	GND	 	GND		 	
B142	GND	 	GND		 	
B143	GND	 	GND		 	
B144	GND	 	GND		 	
B145	GND	 	GND		 	
B146	GND	 	GND		 	
B147	GND	 	GND		 	
B148	+VIN	 	Power	6-36V	 	
B149	+VIN	 	Power	6-36V	 	
B150	+VIN	 	Power	6-36V	 	
B151	+VIN	 	Power	6-36V	 	
B152	+VIN	 	Power	6-36V	 	
B153	+VIN	 	Power	6-36V	 	
B154	+VIN	 	Power	6-36V	 	
B155	+VIN	 	Power	6-36V	 	
B156	+VIN	 	Power	6-36V	 	

10.6 Pins not available for pin multiplexing

Ball	Name	Usage	Comment			
PC14		SDC / eMMC	GPIO possible in case SEL_EMMC_SDHC# is always low (eMMC cannot be used)			
PC15		SDC / eMMC	GPIO possible in case SEL_EMMC_SDHC# is always low (eMMC cannot be used)			
PD00		SDC / eMMC	GPIO possible in case SEL_EMMC_SDHC# is always low (eMMC cannot be used)			
PD01		SDC / eMMC	GPIO possible in case SEL_EMMC_SDHC# is always low (eMMC cannot be used)			
PD02		SDC / eMMC	GPIO possible in case SEL_EMMC_SDHC# is always low (eMMC cannot be used)			
PD03		SDC / eMMC	GPIO possible in case SEL_EMMC_SDHC# is always low (eMMC cannot be used)			
PD04		SDC / eMMC	GPIO possible in case SEL_EMMC_SDHC# is always low (eMMC cannot be used)			
PD05		SDC / eMMC	N/A			
PD06		SDC / eMMC	N/A			
PD07		SDC / eMMC	N/A			
PD08		SDC / eMMC	N/A			
PD09		SDC / eMMC	N/A			
PD10		SDC / eMMC	N/A			
PG00		QSPI	N/A			
PG01		QSPI	N/A			
PG02		QSPI	N/A			
PG03		QSPI	N/A			
PG04		QSPI	N/A			
PG05		QSPI	N/A			
PF05		QSPI	N/A			
PF06		QSPI	N/A			
PF07		QSPI	N/A			

PF08		QSPI	N/A
PF09		QSPI	N/A
PF10		QSPI	N/A
PF11		QSPI	N/A
PF12		QSPI	N/A
PF13		QSPI	N/A
PF14		QSPI	N/A
PA02	PA02_BOOTMOD1	CONFIG	N/A
PA03	PA03_BOOTMOD2	CONFIG	N/A
PB00	PB00_I2C0_SDA	12C	N/A
PB01	PB01_I2C0_SCL	12C	N/A
PC01	PC01_I2C4_SDA_PMIC	12C	N/A
PC02	PC02_I2C4_SCL_PMIC	12C	N/A
PC03	PMIC_IRQ#	CONFIG	N/A
PC13	PC13	N/A	N/A
PD11	PMIC_FS0#	CONFIG	N/A